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Abstract 

For more than a century, inventory control has been a hot topic in operations research and 

industrial engineering. Inventory control issues may be solved using a variety of cutting-

edge numerical techniques, making the area very interdisciplinary and drawing in scholars 

from several academic fields. This characteristic makes it challenging to condense the vast 

body of literature pertaining to inventory management theory into a single book. Because 

of this, the study concentrates on the methods for determining the best control parameters 

as they relate to the history of inventory management models. Analytical methods, optimal 

control theory, dynamic programming, simulation-based optimization, and metamodel-

based optimization are some examples of these strategies. 

Keywords: Classification of inventory models, the development of inventory control, the 

best control parameters, and a review 

 

1. Introduction 

Since prehistoric times, when humans began to acquire and hoard the planet's resources, 

humanity has engaged in inventory control practices, at least in some crude form. 

Furthermore, inventory control has been a hot topic in industrial engineering and 

operations research for almost a century (Bushuev et al., 2015). Because advanced 

numerical approaches may be utilised to solve inventory management problems, it is a 

highly diverse field that attracts scholars from several academic areas. Despite the fact that 

the fundamental concerns of inventory control theory are all about establishing the right 
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time and magnitude of replenishment, each challenge is unique. Furthermore, real-world 

situations are complex, with many specialities and nuances. On the one hand, it 

emphasises the relevance of inventory control models and generates a great deal of interest 

in studying them. On the other hand, these realities make it difficult to incorporate and 

summarise the vast body of work on inventory management theory in a single book. Given 

this, the research focuses on the timeframe of inventory control models in terms of 

approaches for determining optimal control parameters. Analytical techniques, optimum 

control theory, dynamic programming, simulation-based optimisation, and metamodel-

based optimisation are examples of such strategies. 

 

Among other things, for comfortable further reading, it is crucially important to be 

familiar with the most common inventory policies that may be considered as an alphabet 

of inventory control. The models under consideration include such policies as: 

• (R, S) policy assumes that the inventory level is reviewed every R period. Right 

after the review an order is placed bringing the inventory level to the predefined level S; 

• In (R, s, S) policy the inventory level is also reviewed every R periods and as 

soon as it passes a reorder point s, an order is placed bringing the inventory level to the 

predefined level S; 

• (r, Q) policy is quite simple and straightforward, nevertheless, appears to be 

extremely efficient. According to this policy, the inventory level is reviewed continuously, 

and as soon as inventory level reaches the threshold r, an order of size Q is placed; 

• (s, S) policy is absolutely the same as (R, s, S), besides the fact that the inventory 

level is reviewed continuously as in (r, Q) policy (Bartmann and Bach, 2012). 

 

2. Methodology and structure 

The aim of this work is to use a narrative review to show how methodologies and practices 

in the area of inventory control theory have evolved through time. However, the research 

does not intend to review the whole breadth of literature pertaining to inventory control 

theory. In this sense, this study makes just a few references to scientific works in order to 

spot patterns and trends, describe the state of the art, and direct future study. 

The literature review has been performed using Scopus database and Google Scholar 
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search engine focusing mainly on top tier and 2
nd

 tier journals and conference proceedings. 

At the preliminary phase such core keywords as “inventory control” and “inventory 

control model” were used. The collected literature was analyzed and it appeared that all 

the models and approaches can be conveniently classified by the method applied to derive 

optimal control parameters. After that the core keywords were combined with 

methodology-specific keywords that include “optimal control theory”, “dynamic 

programming”, “simulation-optimization” and “metamodel”. The structured of the paper 

fully reflects the proposed classification (Figure 1). 

 

Figure 1. Approach-driven classification of inventory control models 

 

3. Analytic approach to inventory control 

Inventory control has occupied a steady niche among the most important topics in 

operations research. The history of mathematical theory of inventory and production may 

be traced back to Edgeworth (1888), who developed a variant of the news-vendor formula 

to model cash-flow in the bank. Nevertheless, the first formal model developed to aid 

managers in determining the proper size and timing of an inventory replenishment dates 

back to Harris (1913). The economic order quantity (EOQ) model is elementary, 
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nevertheless, the most fundamental and celebrated: 

𝐸𝑂𝑄*
 = √2 𝐾𝐷, (1) 

ℎ 

where D is a constant demand rate (units produced per unit time), K is a setup cost for a 

single unit and h is a holding cost charged per unit of time. 

Because of its algebraic representation, it is well-known as “square-root-formula”. The 

classical EOQ model makes such strict assumptions as prohibited backlogs and 

replenishment lead time equals to zero. Despite the simplicity, the equation elegantly 

describes the crucial relation in inventory control, namely the trade-off between 

replenishment and holding costs. This fact explains, why even nowadays several 

researchers still use EOQ model as a core complementing it with various extensions and 

superstructures (Lukinskiy and Lukinskiy, 2017). Important variations of this model 

include lost-sales, quantity discounts, shelf-life and non-zero replenishment lag. 

EOQ-based models were followed by the study of models that incorporate both 

uncertainty and dynamics (Arrow et al., 1951). Models in which the demand flow is a 

random variable with a known probability distribution. This seminal paper was followed 

by the fundamental treatise in inventory theory (Arrow et al., 1958; Scarf, 1960). These 

works gave a rise to (R, s, S) and (s, S) policies, the most celebrated in inventory control 

theory. The (R, s, S) policy was extensively studied, and its optimality under assumptions 

of independent and stationary demand and deterministic replenishment lead time was 

proved by Karlin (1960) for single-product inventory control systems. For stochastic 

single-product inventory control models, on the other hand, it was demonstrated that the 

(s, S) policy is optimal under different conditions. For instance, the optimality is proved 

for a case of fixed ordering and setup costs by Veinott (1966). Ten years later, optimality 

for the case of lost-sales was proven by Shreve (1976). However, as it was emphasized by 

Zipkin (2008), this proof does not extend to the case when the replenishment lead lag is 

non-zero. 

The last-mentioned fact explicitly exposes the major drawback of analytic models, 

namely they put forward a set of assumptions and considerations that frequently do not 

correspond to real-world inventory control problems and do not guarantee the optimal 
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solution, if these assumptions are violated. Taking into account that inventory control 

problems arise in various industries, and each single business- driven problem is replete 

with non-standard factors and subtleties, it would be rash to believe that the same set of 

assumptions will be equally applicable to all inventory control systems. Besides such 

inflexibility, it is also recognized by such researchers as Duan and Liao (2013) and Tsai 

and Zheng (2013) that real-world inventory control problems are analytically intractable, 

due to their complexity and stochasticity. Such limitations of analytic approaches 

engendered new branches in studies of inventory control. Although, even nowadays 

classical analytic models are still developing and play an important role in inventory 

theory, a huge and diverse arsenal of non-analytic methods are applied, especially, in 

complicated business-driven problems. 

 

4. Control theoretical approach 

Currently optimal control theory is acknowledged as the completely developed branch of 

applied mathematics that uses differential equations to analyse, how physical systems 

behave in time (Ortega and Lin, 2004). Generally, differential equations are a classical 

way to model dynamics in the physical world. In this regard, its application to modelling 

of inventory control systems was considered a valid alternative. In the context of optimal 

control theory, a basic inventory dynamic can be expressed by the following differential 

equation: 

𝑑𝐼 = 𝑃𝑜𝑑𝑢𝑐𝑡i𝑜𝑛(𝑡 − 𝑟) − 𝐷𝑒𝑚𝑎𝑛𝑑(𝑡), (2) 

𝑑𝑡 

where the inventory dynamics I(t) is the result of the difference between the inbound flow 

Production(t – 𝑟) and the demand rate Demand(t). Such that 𝑟 is a replenishment lag 

(Axsater, 1985). 

Applications of classical optimal control methodology in inventory control can be traced 

back to Simon (1952), who managed to optimize inbound flow in an elementary single-

product system. Sethi and Thompson (1981) attempted to apply stochastic differential 

equations to an industrial inventory control model. The considered model operated with a 

single product under stochastic and normally distributed demand. A straightforward 
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application of optimal control theory for inventory systems was shown by Wikner (1994), 

who considered an industrial inventory-control model on three fundamental levels: 

forecasting, lead times, and inventory replenishment strategies. Laplace-transformations 

and Z-transformations were calculated for several common forecasting techniques 

including rolling averages and exponential smoothing. 

Summing up, approaches based on control theory are, as a rule, proposed to a single-

product inventory control system. As it was demonstrated such applications are both valid 

and efficient, when products are homogeneous enough to be treated as a flow. 

 

5. Dynamic programming approach 

Unfortunately, due to the “curse of dimensionality”, at the scale of real-world business-

driven problems both analytic and control theoretical models cannot be solved explicitly in 

reasonable computation time. In this regard, one must eventually resort to some sort of 

approximation (Sarimveis et al., 2008). On the other hand, as it was concluded by 

Domschke et al. (2015), inventory control problems can be naturally paraphrased as 

dynamic programs.  

Among numerous applications of dynamic programming, Clark and Scarf (1960) were the 

first to proof that the optimal feedback rule for a multi-product inventory control system is 

the (R, s, S) policy for the cases with static demand. The considered inventory control 

problem can be characterized as discrete- time and finite-horizon. The optimal control 

parameters for the (R, s, S) policy were derived by splitting the original problem into a 

collection of single-echelon inventory control sub-problems with amended cost functions. 

Jammernegg (1981) meticulously studied a stochastic inventory control model with 

imperfect information on demand. Dynamic programming was applied to obtain optimal 

inventory control policies for two cases. Firstly, for a case of stochastic independent 

correlated demand. Secondly, for partially known and correlated demand. Dynamic 

programming was applied by Simchi-Levi and Zhao (2003) in order to analyse economic 

benefits from information sharing between a retailer and a producer in a multi-echelon 

supply chain. As it is mentioned by Cimen and Kirkbride (2017), as inventory control 

systems become more complex, approaches tailored for optimizing toy-like single-product 
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systems are incapable of deriving optimal policies. For instance, optimal policies cannot 

be derived for inventory control systems involving the interrelated product inventories, 

multidimensionality and non- decomposability. In light of this fact, Cimen and Kirkbride 

proposed the application of approximate dynamic programming augmented with sample 

backup simulation approach to overcome such a computational challenge. The paper 

demonstrated numerical results that signify the undeniable advantage of policies 

developed with the proposed algorithm in comparison to policies obtained using 

deterministic approximation. 

Summing up, dynamic programming is both popular and efficient procedure to obtain a 

nearly- optimal policy for stochastic inventory control problems. However, dealing with 

large-scale multi-product multi-echelon inventory control systems, the computational 

burden becomes immense, which compels to incorporate approximation techniques along 

with simulation into the algorithmic framework. 

 

6. Simulation-based optimization 

Computer simulation or just simulation is the digital reproduction of a physical asset that 

relies on a computer to calculate the outcomes of a mathematical model in numerically 

straightforward manner. Since simulations allow one to verify the reliability of 

mathematical models in very flexible way, they have proven to be a useful tool for 

modelling of various physical systems including inventory (Dubois, 2018). Moreover, 

recent advances in simulation modelling and increased availability of computational 

capacity encouraged engineering, scientific and business communities to take advantage 

on simulations for modelling real-world problems for which the objective function cannot 

be expressed analytically (Pasupathy and Ghosh, 2013). As the result of increased 

popularity of simulations, natural interest in manipulating with input parameters in order 

to maximize or minimize the value of the objective function has sparked. 

Simulation-optimization, also known as simulation-based optimization is an umbrella term 

for techniques that treat computer simulation as a “black-box” looking for specific settings 

of the input parameters that lead to the optimal output (Amaran et al., 2016).  

In general terms, in simulation-optimization problems an algorithm searches for such values of the 
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decision variables that lead to the optimal output of the following objective function (Jalali and 

Nieuwenhuyse, 2015): 

𝑚𝑎𝑥𝐽(𝑥) = 𝐸[𝑌(𝑥)], (3) 

 where x stands for the vector of input parameters, and Φ is the set of feasible solutions. 

Y(x) is a stochastic output of the simulation. So, the value of the objective function J(x) is 

estimated based on the average of n simulation runs (Koulouriotis et al., 2010). 

𝐽 (𝑥) = 1 ∑𝑛 𝑌(𝑥).        (4) 

𝑛 𝑛     i=1 

It is worth to emphasize that the number of runs (also known as replications) n used in the 

estimation of objective function is a core determinant of both accuracy of estimation and 

computational cost for simulation-optimization techniques, which make it a subject of 

classical trade-off (Banks et al., 2000). 

Summarizing, simulation-based optimization aims to utilize a simulation instead of an 

objective function in traditional form applying an optimization algorithm to find such 

simulation adjustments that would lead to the optimal output (Figure 2). 

 

Figure 2. The logic behind simulation-optimization in discrete-event case 

 

In the demonstrated framework, the iterative searching process has to assess the quality of 

feasible solutions, highlighting the promising ones. The process continues until the search 

time runs out. Immediately after this, a decision maker selects a final solution among 

promising with regard to a preferable risk policy. According to Pidd (1998), the simulation 

provides a natural way to introduce randomness of stochastic process. Furthermore, real-

world stochasticity may be modelled throughout the best-fit probability distribution. 
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There is a plethora of simulation-optimization methods, however, all of them may be 

divided by two major groups, namely metaheuristics and gradient-based. When one deals 

with extremely large or even infinite set of feasible solutions, it is recommended to apply 

metaheuristics (Hong and Nelson, 2009). Notable examples of metaheuristics include 

genetic and evolutionary algorithms, evolutionary strategies, particle swarm optimization, 

tabu search and simulated annealing (Olafsson, 2006). Although metaheuristics is mainly 

applied to combinatorial optimization problems, they also could be successfully used in a 

continuous case (Andradottir and Prudius, 2010). For cases of continuous decision 

variables and differentiable objective function, such gradient-based methods as sample 

path optimization and stochastic approximation are widely used. It is worth to mention that 

such techniques require the gradient estimation, which may be done using likelihood ratio, 

finite differences, simultaneous perturbations, or perturbation analysis. 

 

System Dynamics 

In the late 1950s a novel methodology aimed to study dynamic flows in industrial systems 

was introduced (Forrester, 1961). This methodology was initially named as “Industrial 

Dynamics”, however, the scope was greatly extended and the approach became 

eventually known as “System Dynamics”(Forrester, 1973). System Dynamics initially 

aimed to increasing the adoption of feed-back theory among managers and management 

scientists. At the beginning the method has been seriously criticized (Ansoff and Slevin, 

1968). However, nowadays System Dynamics is a widely used method to understand the 

dynamics of complex systems including inventory control. The pivotal philosophy of the 

method is based on the holistic approach to the modelling, namely System Dynamics 

recognizes that the structure of any complex system is as important in determining its 

behaviour as the set of individual components themselves. 

Despite the fact that System Dynamics is usually used exclusively as a simulation tool, the 

literature has several instances in which System Dynamics combined with optimization 

techniques was applied to identify optimal policies and parameters for inventory control 

systems (Schenk et al., 2010). For example, the paper by Wolstenholme (1982) presented 

the use of System Dynamics in optimization of multi-echelon supply chains in the copper 
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industry. Besides inventory control, such aspects as mining and production were also taken 

into account. Additionally, it is worth to mention the case-study described by Powell and 

Bradford (2000), who managed to apply qualitative systems dynamics to derive the 

optimal resource-management policy (including inventory control parameters) for an 

international defence company. 

 

Discrete-Event Simulation 

Nowadays discrete-event simulation (DES) is the most prominent simulation paradigm for 

simulation-optimization frameworks (Gosavi, 2015). The DES paradigm is specialized in 

modelling systems at a low and medium level of abstraction and focuses on systems in 

which a sequence of operations is performed (Mahdavi and Wolfe-Adam, 2019). 

Following the introduction of linear congruential random-number generators (Lehmer, 

1951), the origin of DES dates back to General Simulation Program, the first general-

purpose simulator for industrial plant modelling (Tocher and Owen, 1960). 

Nevertheless, the first simulation-based optimization of inventory control system was 

described only in the middle of 20
th

 century by Fu (1994), who demonstrated the 

simulation-optimization application to an inventory control system under (s, S) policy. The 

model assumed zero replenishment lag and periodic review. The cost function comprised 

holding, purchasing, transportation and backlogging. Fu managed to cover both the 

discrete parameter and the continuous parameter cases. In discrete parameter case, the 

author applied such methods as ranking-and-selection procedures and multiple- 

comparison. In the continuous parameter case such gradient-based methods as perturbation 

analysis were used. Applying derivative-free simulation-optimization method Kapuscinski 

and Tayur (1998) derived the nearly-optimal control policy and analysed its properties for 

a single-echelon inventory control model that operates with a single product under 

stochastic demand. Authors considered several cases including the finite-horizon and the 

discounted infinite-horizon. Even this early paper already concluded with an extremely 

significant statement that obtaining the exact analytical solutions is difficult for stochastic 

large-scale inventory control problems. 

In the seminal paper Bollapragada and Rao (2006) examined a single-product, non-
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stationary inventory control problem with both supply and demand represented as 

random variables. Besides that, the model incorporated capacity limits on replenishment 

and service level requirements. A DES model for finite-horizon problem is developed in 

order to determine nearly-optimal replenishment orders over the horizon. The authors 

proposed an unusual heuristic based on the first two moments of the random variables and 

a normal approximation. Numerical experiments confirmed that the proposed heuristic 

was distinguished by high performance of approximately 99.75% of real optima. The 

applied simulation- optimization worked even when the output parameters were not 

normally distributed. Additionally, the paper contained sensitivity analyses of such 

parameters as shortage penalty costs, capacity limits, and demand variance. In the same 

year, the whole DES-based simulation-optimization framework was proposed (Aras et al., 

2006). The framework was originally developed to compare two alternative strategies in 

realistic settings. The first strategy used manufacturing as the primary mean of satisfying 

customer demand. On the other hand, the second one was focused on remanufacturing. 

Simulation- optimization equipped with non-monotonic search heuristic was tested on 

numerical experiments with different initial parameters. 

The solemn paper by Ding et al. (2009) addressed the design of production-distribution 

networks. Besides inventory control, such networks include supply chain configuration, 

order splitting and transport allocation. During the research a flexible framework for 

simulation was developed in order to enable the automatic simulation with different 

inventory control strategies. The framework incorporated a multi-objective genetic 

algorithm for optimization of operation strategies and associated control parameters in 

production-distribution network. It is also worth to note that the proposed simulation-

optimization framework was applied in real-world automotive industry. The similar 

metaheuristics was utilized for optimization of stochastic multi-product inventory control 

system under the (R, s, S) policy (Arreola-Risa et al., 2011). Additionally, the proposed 

method incorporated regression analysis. The approach was developed and tested for an 

oil and gas company, which eventually decided to adopt it. In order to test the performance 

in general settings, 900 simulation experiment with different initial parameters were 

conducted. 
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Heuristics-driven simulation-optimization approach was also used for determination of the 

appropriate safety-stock level for inventory control in clinical trial supply chain (Chen et 

al., 2012). Besides inventory control, demand forecasting was a subject of interest. The 

heuristics behind the framework took advantage on mixed integer linear programming for 

solving the resource-constrained scheduling problem). Becerril-Arreola et al. (2013) 

considered a problem in online retail industry associated with two-step decision. In 

described settings, retailer firstly makes decisions on his profit margin and free-shipping 

threshold. After the optimal inventory level for a planning horizon should be determined. 

In the presented case-study publicly available statistics is used to find the best-fitting 

distribution for consumers’ order sizes and conversion rate. The simulation software 

“Arena” was used to simulate the inventory control system and in-built optimizer 

“OptQuest” was applied to derive the optimal control parameters that lead to maximum 

profit. Moreover, a sensitivity analysis was conducted and important managerial insights 

were obtained. Namely, the impact of the unit holding and unit shipping costs on the 

retailer’s optimal decisions was discovered. It is also worth to emphasize that some 

researches attempted to incorporate linear programming into simulation-optimization 

framework. For instance, Zeballos et al. (2013) in their unusual research embedded 

simplex method in order to find the optimal working capital target and order size for a 

single-product single-echelon finite horizon inventory control system. This study 

especially focused on financial aspects of inventory control incorporating into simulation 

such features as working capital constraints, transaction delays and several separated 

sources of financing. 

Peirleitner, et al. (2016) considered a stochastic supply chain management problem. In this 

paper each node along the multi-echelon multi-product supply chain manages stock 

according to the (r, Q) policy. The problem was represented as bi-objective optimization 

problem. Such that overall supply chain costs were subject to minimization, while service 

level was subject to maximization. Such optimal control parameters as reorder points and 

lot sizes were found using simulation-optimization approach, which combined an 

evolutionary algorithm with DES simulation. In the same year discrete-rate simulation was 

used as a core to solve a single-product (r, Q) inventory control problem (Zvirgzdina and 
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Tolujew, 2016). In this study the model was developed in ExtendSim using inbuilt genetic 

algorithm to derive optimal control parameters. 

The research conducted by Zahedi-Hosseini (2018) is focused on the joint simulation-

based optimization of operative maintenance and spare part inventory control for an 

industrial facility with various configurations. Firstly, spare part provision for a single-line 

conveyor-like system was considered. The simulation results indicate that a (R, s, S) was 

cost-optimal. Secondly, a parallel multi- line production system was modelled. It is found 

out that a policy inspired by just-in-time (r, Q) resulted the lowest costs. In both cases the 

long-run average cost per unit time was taken as an objective function to minimize. 

Several control policies were compared and optimal parameters were derived using the 

inbuilt optimizer. In order to tailor inventory control to urgent needs of grocery retail, the 

discrete-event simulation model with realistic perishability mechanics is proposed 

(Jackson, 2019a). The model is stochastic and operates with multiple products under 

constrained total inventory capacity. Additionally, the proposed model is distinguished by 

quantity discount, uncertain replenishment lags and lost sales. An optimisation framework 

based on a genetic algorithm is also proposed for deriving an optimal control policy. 

 

7. Metamodel-based optimization 

Metamodeling is a fairly old and well-known approach in simulation community (Law and 

Kelton, 2000) that also has not bypassed logistics and production. The grist of the idea is to 

find a model that approximates the “black-box” with accuracy sufficient in the context of 

the task (Figure 3). As the result, a computationally efficient metamodel captures relations 

between decision variables and simulation output. After the metamodel is developed, it is 

possible to employ techniques specifically designed for deterministic optimization. Among 

various metamodeling techniques the most sought-after are response surface methodology 

(Angun et al., 2009), kriging models, radial basis functions (Biles et al., 2007) and 

artificial neural networks (Nezhad and Mahlooji, 2014). 
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Figure 3. The logic behind metamodeling 

 

Among applications related to inventory-control, it is, firstly, worth to mention the 

research conducted by Bendoly (2004). This research considered a simulation of 

substitute-inventory availability scenarios in transshipment inventory control system. The 

proposed methodology combined response surface methodology with non-linear 

optimization. The findings demonstrated that reductions in coordination costs and 

associated inventory availability decisions could provide limited benefits. Biles et al. 

(2007) explored the potential of the kriging methodology for constrained simulation 

optimization. The proposed technique is applied to an inventory control system under (s, 

S) policy. The experimental result demonstrated that kriging was a robust approach to 

solve constrained optimization problems in stochastic simulation of inventory control 

systems. Additionally, it is worth to mention the applied research (Lin et al., 2009) that 

proposed an algorithm for defining an optimal inventory level for wafer fabrication 

processes. The research adopted a simulation model based on a real factory in order to 

generate data and demonstrates an optimization algorithm combining a multilayer 

feedforward neural network with quadratic programming. Combining second-order 

polynomial metamodel with response surface methodology the paper written by Angun 

(2011) demonstrated the solution to risk-averse SO problems. The novel robust response 

surface methodology was applied to inventory control problem with constrains. 
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Abruptly, recent pervasive and game-changing findings in deep-learning did not bypass 

metamodeling sparking the surge of interest to artificial neural networks (ANN) becoming 

a “hot-topic” in simulation community (Lechevalier et al., 2015). For example, Prestwich 

et al. (2012) managed to combine a single-layered ANN with an evolutionary algorithm to 

derive an optimal policy for a simulation-based stochastic multi-echelon inventory-control 

system. In the proposed neuroevolutionary approach ANN was trained by a simulation-

driven evolutionary algorithm. Numerical experiments proved that this method is capable 

to derive high-quality policies in feasible computational time using networks of a simple 

architecture. In the same year the seminal research (Can and Heavey, 2012) presented 

another evidence of capability to combine genetic programming and ANNs for 

metamodeling of complex inventory control systems. This paper provided a comparative 

analysis of genetic programming and ANNs for metamodeling of DES models. Three 

stochastic industrial systems are empirically studied, namely an automated material 

handling system in semiconductor manufacturing, an (s, S) inventory control model and a 

serial production line. The results showed that genetic programming provides greater 

accuracy in validation tests, demonstrating a better generalization capability than ANN 

with one hidden layer. On the other hand, genetic programming required more 

computational budget comparing to metamodel-based approach. 

Nezhad and Mahlooji (2014) meticulously studied ANN-based metamodels for stochastic 

multi- dimensional SO problems with constraints. It is important to emphasize that the 

authors used a realistic (s, S) inventory control model to study the robustness and 

efficiency of the developed algorithm and compared the results with those of the Opt 

Quest optimization package. This numerical study indicated that the newfound 

metamodel-based algorithm was competitive in terms of accuracy, but required fewer 

simulation replications. It is also worth mentioning that Jad and Owayjan (2017) presented 

the simulation of a whole enterprise resource planning system that utilized 30-layered 

ANN as an inventory-policy controller. The application of neuroevolutionary automated 

machine learning to metamodeling of complex production-inventory systems with lost-

sales and Markov-modulated demand is discussed in the recent research (Jackson, 2019b). 

The proposed solution incorporates multilayer perceptron and genetic algorithm. 
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8. Conclusions 

Inventory control has been a hot topic of debate in the academic, scientific, and corporate 

realms for more than a century. In particular in academia, analytical models continue to 

dominate the landscape of inventory control theory. Unfortunately, if the basic 

presumptions and considerations are broken, they do not guarantee the best answer. 

Furthermore, such presumptions typically don't match up with actual inventory control 

issues. Contrarily, business-driven inventory control in real-world settings is usually 

characterized by multidimensionality, non-decomposability, and a wealth of various 

specializations and nuance. 

Due to a high degree of complexity and analytically intractable of business-driven 

problems, inventory control theory adopts immense arsenal of methods from different 

scientific disciplines. For instance, the approaches based on control theory demonstrate 

efficiency in modelling of single-product inventory control systems, when products are 

homogeneous enough to be treated as a flow. On the other hand, the approaches based on 

dynamic programming are efficient in deriving nearly-optimal control parameters for 

stochastic inventory control problems. However, dealing with large-scale multi-product 

multi-echelon inventory control systems, the computational burden becomes immense, 

which compels to incorporate approximation techniques along with simulation into the 

algorithmic framework. 

The tendency to choose computationally efficient numerical approximations over explicit 

analytic solutions rises the popularity of simulation-optimization techniques. A fortiori, 

simulation models may be exclusively tailored to industrial needs providing a modeler 

with a tool to deal with real-world uncertainty in unconstrained way. Unfortunately, 

simulation, especially detailed, is both time and memory consuming. In the light of these 

facts, it is commonly considered be more reasonable to use an alternative cheaper-to-

compute metamodel, which is specifically built in order to approximate a target simulation 

with a sufficient degree of accuracy. 
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