POWER SYSTEM STABILITY BY USING TCSC

Mr. Mukesh Garg

¹Guru Kashi University, Talwandi Sabo

ABSTRACT

The loss of transient stability in a power system is caused by overloading of some lines (or severe line faults), as a result of other lines tripping off as a result of faults or significant load loss. FACTS technology may improve power control, boost power transfer capacity, reduce line losses, raise power system damping, and improve the stability and security of the power system by allowing quick and flexible control of ac transmission parameters and network structure. The major goal is to use MiPower software to construct a multi-machine system with TCSC (Thyristor Controlled Series Capacitor) controllers.

Keywords -Transient Stability, Tripping Off, FACTS, TCSC, Mi Power Software

I. INTRODUCTION

The major goal of the study is to use a Thyristor Controlled Series Capacitor to preserve system stability. A power electronics-based Flexible AC Transmission System (FACTS) gadget is the rationale for employing TCSC Thyristor Controlled Series Capacitor (TCSC). TCSCs are used to increase the amount of power flowing through a line by efficiently correcting the line's reactance. A TCSC differs from a regular series capacitor in that it may change its compensation dynamically, whereas a standard series capacitor has a fixed compensation. As illustrated in Fig. 1.1, the basic conceptual TCSC module consists of a fixed series capacitor, C1, a fixed parallel capacitor, C2, and a thyristor-controlled reactor, L. A real TCSC module, on the other hand, incorporates safety gear.

Fig. 1.1 Equivalent Circuit

II. 5-BUS SYSTEM STABILITY

A five-bus system is depicted by a single line diagram with two generating units and seven lines. On a 100 MVA basis, per-unit transmission line series impedances and shunt susceptances are presented. The table shows real power generation, real and reactive power loads in MW and MVAR.

With TCSC, the power flow over line 3-4 may be increased to 21 MW. Assume the bus's base voltage is 220 kV and the system frequency is 60 Hz.

Transm	ission Line Data in	per unit
Bus code	Impedance	Line charging
From – To	R+jX	B/2
1-2	0.02+j0.06	0.08+j0.24
1-3	0.08+j0.24	0.0+j0.025
2-3	0.06+j0.18	0.0+j0.02
2-4	0.06+j0.18	0.0+j0.02
2-5	0.04+j0.12	0.0+j0.015
3-4	0.01+j0.03	0.0+j0.010
4-5	0.08+j0.24	0.0+j0.025

Load	Load & Generation Data									
Bus	Bus	Gene	Gener	Load	Load					
No.	voltage in	ratio	ation	MW	MVAR					
	pu	n	MVA							
		MW	R							
1	1.06+j0.0	0	0	0	0					
2	1.00+j0.0	40	30	20	10					
3	1.00+j0.0	0	0	45	15					
4	1.00+j0.0	0	0	40	5					
5	1.00+j0.0	0	0	60	10					

III. LOAD FLOW ANALYSIS

Connect other loads to buses 3, 4 and 5. Enter other load details as given in the following table.

Load Details									
Load No	Bus No	MW	MVAR						
2	5	60	10						
3	3	45	15						
4	4	40	5						

To view the report, run the load flow analysis and then select Report on the load flow analysis window. The following is a portion of the report below.

BUS VOLTAGES A	AND POWERS					
NODE FROM	V-MAG ANGLE	MW	MVAR	MW	MVAR	MVAR
NO. NAME	P.U. DEGREE	GEN	GEN	LOAD	LOAD	COMP
1 North 2 South 3 Lake 4 Main 5 Elm	1.0600 0.00 1.0000 -2.06 0.9872 -4.64 0.9841 -4.96 0.9717 -5.76	$\begin{array}{c} 131.122 \\ 40.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	90.816 -61.593 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 20.000\\ 45.000\\ 40.000\\ 60.000\end{array}$	$\begin{array}{c} 0.000 \\ 10.000 \\ 15.000 \\ 5.000 \\ 10.000 \end{array}$	0.000 #> 0.000 0.000 0.000 0.000 0.000
NUMBER OF BUSE	S EXCEEDING MIN	NIMUM VOLTA	GE LIMIT	(@ mark) :	0	
NUMBER OF BUSE	S EXCEEDING MAN	KIMUM VOLTA	GE LIMIT	(# mark) :	1	
NUMBER OF GENE	RATORS EXCEEDIN	NG MINIMUM	Q LIMIT (~	< mark) :	0	
NUMBER OF GENE	RATORS EXCEEDIN	NG MAXIMUM	Q LIMIT (;	> mark) :	1	

LINE FLOWS AND LINE LOSSES

SLNO	CS	FROM	FROM	Т0	Т0	FC	RWARD	L	.055	%
		NODE	NAME	NODE	NAME	MW	MVAR	MW	MVAR	LOADING
	77									
- 1	1	1	North	2	South	89.331	/3.995	2.4859	1.0868	109.40
2	1	1	North	3	Lake	41.791	16.820	1.5178	-0.6922	42.5/
3	1	2	South	3	Lake	24.473	-2.518	0.3595	-2.8708	24.68
4	1	3	Lake	4	Main	19.386	2.865	0.0401	-1.8230	20.28
5	1	4	Main	5	Elm	6.598	0.518	0.0431	-4.6525	8.68
6	1	2	South	5	Elm	54,660	5.558	1.2150	0.7287	54.99
7	1	2	South	4	Main	27.713	-1.724	0.4609	-2.5545	27.8/

IV. APPLICATION OF TCSC

The goal of joining TCSC is to increase power flow in line 3-4 from 19.38 MW to 21 MW. Line 3-4 is disconnected/made out of service/deleted before connecting to the TCSC, and a new bus (Bus6) is added between Bus3 and Bus4. Between Bus6 and Bus4, connect a transmission line with the same specifications as

line 3-4. Connect the TCSC symbol in the power system tool bar to Bus3 and Bus6, just like the other series parts are linked. Give the ID number 1 and click OK. The TCSC form will pop up.

NODE NO.	FRO)M IE	V-MAG P.U.	ANGI DE GRI	LE I EE GI	IW MVA En ge	R N L	MW OAD	MVAR Load	M (IVAR Comp	
1		North South	1.0600	0.0	00 131.12 04 40.00	27 90.93 00 -61.80	7 0. 02 20.	000 (000 10).000).000	0.	000	#>
3		Lake	0.9870	-4.1	73 0.00	0.00	0 45.	000 15	.000	0.	000	
4		Main	0.9844	-4.1			10 40.	000 10	.000	0.	000	
) 6		EIN	0.9/18	-)	16 0.00		10 00. 10 0	000 10	000	0.	000	
NUMBE Numbe Numbe	ER C ER C ER C)f Bus)f gen)f gen	ES EXCEEI IERATORS I IERATORS I	DING N EXCEEN EXCEEN	MAXIMUM VOL DING MINIMU DING MAXIMU	.TAGE LIMI M Q LIMIT M Q LIMIT	T (# mar (< mark (> mark	k) :) :) :	1 0 1			
NUMBE NUMBE NUMBE LINE	ER C ER C ER C FLC	OF BUS OF GEN OF GEN OWS AN	ES EXCEEI IERATORS I IERATORS I ID LINE L(FROM	DING N EXCEEN EXCEEN DSSES	MAXIMUM VOL DING MINIMU DING MAXIMU	TAGE LIMI M Q LIMIT M Q LIMIT	T (# mar ⁻ (< mark ⁻ (> mark	k) :) :) :	1 0 1			~~~~
NUMBE NUMBE LINE SLNO	ER C ER C ER C FLC	OF BUS OF GEN OF GEN OWS AN FROM NODE	ES EXCEEN IERATORS N IERATORS N ID LINE LO FROM NAME	DING N EXCEEN EXCEEN DSSES TO NODE	MAXIMUM VOL DING MINIMU DING MAXIMU DING MAXIMU DING MAXIMU NAME	.TAGE LIMI M Q LIMIT M Q LIMIT FOF MW	IT (# mar ~ (< mark ~ (> mark WARD 	k) :) :) : MV	1 0 1 LOSS	MVAR	LOAD	 % ING
NUMBE NUMBE LINE SLNO 1 2	ER C ER C ER C FLC CS	OF BUS OF GEN OF GEN OWS AN FROM NODE 1 1	ES EXCEEN IERATORS N IERATORS N ID LINE L(FROM NAME North North	DING M EXCEET EXCEET DSSES TO NODE 2 3	MAXIMUM VOI DING MINIMU DING MAXIMU TO NAME 	TAGE LIMI M Q LIMIT M Q LIMIT FOF MW 88.676 42.451	T (# mar (< mark (> mark WARD MVAR 74.188 16.749	k) :) :) : 2.4704 1.5554	1 0 1 LOSS / 	MVAR . 0405 . 5783	LOAD	 % ING 9.1 3.1
NUMBB NUMBB LINE 5LNO 1 2 3	ER C ER C ER C FLC CS 1 1 1	OF BUS OF GEN OF GEN WWS AN NODE 1 2	ES EXCEEI IERATORS I IERATORS I ID LINE L(FROM NAME North North South	DING M EXCEET EXCEET DSSES TO NODE 2 3 3	MAXIMUM VOI DING MINIMU DING MAXIMU NAME South Lake Lake	TAGE LIMI M Q LIMIT M Q LIMIT FOF MW 88.676 42.451 25.503	T (# mar (< mark (> mark WARD MVAR 74.188 16.749 -2.695	k) :) :) : 2.4704 1.5554 0.3905	1 0 1 LOSS 1 	MVAR 0405 5783 7769	LOAD 10 4 2	 % 9.1 3.1 5.6
NUMBE NUMBE NUMBE LINE SLNO 1 2 3 4	ER C ER C ER C FLC CS 1 1 1 1	OF BUS OF GEN OF GEN WWS AN NODE 1 2 4	ES EXCEEN IERATORS N IERATORS N ID LINE LO FROM NAME North North South Main	DING M EXCEET EXCEET DSSES TO NODE 2 3 3 5 5	MAXIMUM VOI DING MINIMU DING MAXIMU TO NAME 	TAGE LIMI M Q LIMIT M Q LIMIT M Q LIMIT 88.676 42.451 25.503 7.137 7.137	T (# mar (< mark (> mark WARD MVAR 74.188 16.749 -2.695 0.413	k) :) :) : 2.4704 1.5554 0.3905 0.0487	1 0 1 LOSS 1 	MVAR 0405 5783 7769 6377	LOAD 10 4 2	% ING 9.1 3.1 5.6 9.0
NUMBE NUMBE NUMBE LINE SLNO 2 3 4 5 6	ER C ER C ER C FLC CS 1 1 1 1 1 1	OF BUS OF GEN OF GEN WWS AN NODE 1 2 4 2 2	ES EXCEEI IERATORS I IERATORS I ID LINE L(FROM NAME North North South Main South South	DING I EXCEEL EXCEEL DSSES TO NODE 2 3 3 5 5 4	MAXIMUM VOI DING MINIMU DING MAXIMU TO NAME South Lake Lake Elm Elm Najo	TAGE LIMI M Q LIMIT M Q LIMIT M Q LIMIT 88.676 42.451 25.503 7.137 54.103 26.600	T (# mar (< mark (> mark WARD MVAR 74.188 16.749 -2.695 0.413 5.606 -1 566	k) :) :) : 2.4704 1.5554 0.3905 0.0487 1.1911 0.4244	1 0 1 LOSS 1 	MVAR 0405 5783 7769 6377 6565 6642	LOAD 10 4 2 5 2	 % ING 9.1 3.1 5.6 9.0 4.4

International Journal of Advanced Technology in Engineering and Science Volume No.06, Issue No. 01, January 2018

www.ijates.com

TCSC POV	VER FLOWS						
SLNO	FROM NODE	TO NODE	FORN (MW)	VARD (MVAR)	LOSS (MVAR)	TCSC REACT.	Final XL_Value
1	3	6	21.08	2 42	-0.10	-0.0216	

The power flow via the line is enhanced to 21 MW after attaching the TCSC, and the TCSC reactance is capacitive with a magnitude of 0.0216 per unit.

TCSC output on the GUI Screen is given below

V. CONCLUSION

The stability of the power system employing TCSC is explained, and the system dynamics are compared during a significant disruption. TCSC is used to increase the amount of power flowing through a line by efficiently adjusting the line's reactance. The system is initially unstable, but following the installation of TCSC, the power flow in line 3-4 improves from 19.38 MW to 21 MW. The data and findings show that the system's overall performance has improved significantly.

REFERENCES

- [1] Baker, M. H., September 1995 "An Assessment of FACTS Controllers for Transmission System Enhancement," CIGRE SC 14 International Colloquium on HVDC & FACTS, Montreal.
- [2] Miyazaki, Y.Kimura, M.Karube, T.Noro, Y.Takahashi, C. Kishibe, H. 2002"Development and Verification of a FACTS Digital Real-Time Simulator", Proceedings of the IEEE Asia Pacific Transmission and Distribution Conference and Exhibition 2002, (IEEE/PES), Vol.1,pp 324-329.
- [3] N.G Hingorani, L.Gyugyi,2000 "Understanding FACTS Concepts and Technology of Flexible AC Transmission Systems", IEEE Press, New York.

- [4] Patel Ramnarayan, Bhatti T.S, Kothari D.P, 2002"MATLAB/Simulink Based Transient Stability Analysis of Multi-machine Power System" International Journal of Electrical Engineering Education Vol. 39, Issue 4, pp 320-336.
- [5] P.M.Anderson, A. A. Fouad, 1977 "Power System Control and Stability," Science Press, Ephrata, Pa 17522.
- [6] S.Chatterji,C.S. Rao, T.K. Nagasarkar,1996 "Applications of FACTS Controllers for Improving Power System Stability", Proceedings of Institution of Engineers National Convention of Electrical Engineers-Power System Management to overcome Power shortage.
- [7] Sidhartha Panda, Ramnarayan N.Patel, 2006"Improving Power System Transient Stability with an Off-Centre of Shunt FACTS Devices" Journal of Electrical. Engineering, Vol 57, Issue 6, pp 365-368,.
- [8] T.R.Jyothsna, K. Vaisakh, Dec 2008 "Improving Multi-Machine Transient Stability Using a Non-Linear Power System Stabilizer under Different Operating Conditions," Fifteenth National Power Systems Conference (NPSC).
- [9] Y. Pannatier, B.Kawkabani, J.J simond ,2008" Modeling and Transient Simulation of FACTS in Multi-Machine Power Systems" Proceedings of the IEEE International Engineering Conference.
- [10] Abdullah Swissi Emhemed, Ryan M. Tumilty, Nand K. Singh,Graeme M. Burtand James R. McDonald,," Analysis of Transient Stability Enhancement of LV-Connected Induction Microgenerators by Using Resistive-Type Fault Current Limiters", IEEE Transactions On Power Systems, Vol. 25, No. 2, MAY 2010.
- [11] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John Thomas," MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education," IEEE Transactions On Power Systems, Vol. 26, N0.1, FEB 2011.
- [12] Kavitha R,"Transient Stability of IEEE-30 bus system using E-TAP software", International Journal For Scientific And Engineering Research Volume 3,Issue 12,December 2012.
- [13] Mardavij Roozbehani, Munther A Dahleh, and Sanjoy K Mitter, "Volatility of Power Grids under Real-Time Pricing" IEEE Transactions On Power Systems, 2012.
- [14] Dr. Tarlochan Kaur and Sandeep Kakran, "Transient Stability Improvement of Long Transmission Line System by Using SVC," International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 1,
- [15] Issue 4, October 2012.
- [16] Changhong Zhao, Ufuk Topcu, Na Li, Steven Low "Design and Stability of Load-Side Primary Frequency Control in Power Systems", IEEE, 2013.