

19 | P a g e

RESEARCH ON TUNING HADOOP PARAMETERS

FOR HETEROGENEOUS MULTI-NODE CLUSTER

Ms.Baljinder Kaur1, Ms.Rimpi2

1,2Guru Kashi University, Talwandi Sabo

Abstract

Hadoop, an open source MapReduce source, is becoming a de-facto platform dedicated to data storage on distributed and

local machines to analyze and process large amounts of information on asset hardware. Provides a variety of parameters with

default and standard single-node configuration and collections with multiple locations and applications. If it allows the user

to change the configuration according to needs by editing xml files. Tuning Hadoop parameters is a challenging task as

performing even a simple program requires modification of different parameters. Therefore, good border configurations can

improve the Data Location, the amount of data processed and improve Network, Processor and Output / Output. This paper

seeks to shed light on the literature associated with customization parameters for better optimization and efficient use of

resources by proposing a framework to elevate and modify parameters to improve Hadoop performance in a multi-node

multi-node collection.

Keywords: Hadoop, HDFS, MapReduce, Parameters.

I. INTRODUCTION

In this modern world the flooded and massive data is growing in structured, semi-structured and unstructured form

consisting of audio, video, text, numbers, images, photographs, stagnant data, radar data, social media data and

streaming data [1]. This data is collected from huge datasets repeatedly for immediate exploration with the help of

complex applications and tools to visualize, store, route, and analyze the facts and figures from different

perspectives for various sources. Organizations ranging from small to large, utilizes this Big Data as supreme

fragment in the process of decision making [2]. Big Data can be categorized, as per the Volume, Velocity, Variety,

Volatility, Variability, Value, Validity, and Veracity, by eight V’s [3][4][5].

 Doug Cutting and Michael J. Cafarella, created Hadoop in context to be data intensive to support Nutch

search engine project [6]. Hadoop is designed on the basis of master-slave architecture as shown in Fig.1. It offers

easy solution for distributed and parallel computing with an ability of skipping the description related to

communication recovery program [7]. The master JobTracker is responsible for management of resources of

cluster, job scheduling, handling fault-tolerance and monitoring the progress. The TaskTracker module, present on

each of the slave nodes, is accountable for throwing parallel tasks along with task status to the JobTracker.

Responsibility of slave node here is to run as well as execute one or the other Map or Reduce tasks, and is

bifurcated into static computing slots [8].

20 | P a g e

Fig. 1. Apache Hadoop Architecture

 Being motivated by GFS, Hadoop Distributed File System (HDFS) is used for storage of huge data (terabytes or

even petabytes) and files on several computers [4]. By replicating data on geographically diverse nodes and

different servers it attains reliability. These nodes dialogues to: rebalance scattered data, create and transport

replicas, and preserve high data replication rate. HDFS contains: NameNode and DataNode where the NameNode

acts as master in order to manage namespace and the DataNode is slave node used to store blocks of data nearby

and remote locations following distributed policy to perform read/write requests [5].

 Map Reduce the model that the Hadoop soul provides high-density highways for large servers in the Hadoop

collection. It consists of a static pipeline of two individual tasks: map and reduce, where map task is responsible for

converting the input set of data into a different dataset by splitting each element into key-value pairs and reduce

task chains the key-value pairs obtained from a map task to form set of pairs for generating output[6]. The map

function performs phases: read and sort, and then store the output file to node’s local storage. The reduce function

performs shuffle, sort and reduce phases [7]. Data locality and Amount of data processed by Hadoop plays an

important role in improving the performance of job execution in MapReduce [8].

II. HADOOP PARAMETERS CONCERNS AND RECOMMENDATIONS

A. HDFS associated parameters

 Hadoops low performance in heterogeneous environment motivates to introduce a strategy for data placement

to place data crossways the nodes in a way so that each node has stable load of data processing. [12] throw a light

on the problems like tuning number of map/reduce tasks, cluster configuration, locality of data, application logic,

blockages in system, low resource utilization, block reports and replication that degrades performance of

heterogeneous Hadoop cluster along with suggestions to improve it.

B. MapReduce associated parameters

To ease the overall execution time of jobs in Hadoop [1] provides a dynamic slot scheduling approach for

managing intensive I/O workloads on Task Tracker nodes in clusters by effectively leveraging CPU resources.

 According to [7] Hadoop offers different ways to configure parameters in its variants while deploying and this

involves vast knowledge of hardware and application for appropriate modification in configuration of a parameter.

Configuring parameters by assigning wrong values result in degraded system performance and low utilization of

21 | P a g e

resources at disposal. Sailfish which is one of the improved variations of Hadoop provides auto-tuning and

minimized disk i/o operations to establish number of reducers and supervising intermediary data skewness

dynamically.

 Focusing on configuration of slot and complications of scheduling tasks, [13] proposed novel approach

FRESH, for minimizing the makespan of job and enhancing fairness to support both static and dynamic slot

configurations by undertaking the decisions regarding number of map/reduce slots required and allocating

map/reduce jobs to available slots.

 To measure the degree of CPU deployment for individual map task and IO throughput two counters for

Hadoop are introduced to forecast optimum Map Slot Value using the proposed low-overhead technique [14]. Map

Slot Value, which limits on the number of total map tasks that can run at the same time on single node, remains

among essential parameters which directly affect the way resources are allocated and furthermore influences

Hadoop performance.

 To overcome the problem of delay in completion time of job and lower rate of resource utilization [15]

proposes a scheme for scheduling the slots for map-reduce tasks to minimize I/O wait during job implementation

and improve resource utilizations in order to strengthen overall performance.

 [16] proposes a structure for evaluating the performance to ease the user efforts in MapReduce for fine-tune

the settings of reduce task (shuffle, reduce and write) and map task (read, map, collect, spill, merge) with help of

performance models: workflow model along with platform model to optimize the performance.

 For the efficient use of available resources on the basis of load of each node, [17] proposes a method for which

can take decision about number of tasks to be execute.

 In order to significantly lower the cost of system [19] proposed a function for MapReduce using clustering

algorithm for mean shift to execute the jobs in better way with optimum values for parameters along with analysing

the data sets for minimizing energy usage, increased system performance and complexity management.

C. Parameters associated commonly with HDFS and MapReduce

In case of processing batch tasks Hadoop’s default configuration results in low utilization of resources which in

turn delays in execution time [13] . Furthermore [13] proposes a dynamic effective slot configuration to allocate

appropriate tasks to slots while processing batch of map/reduce jobs to provide enhanced fairness and make span.

 One of the major issues in MapReduce framework is optimum utilization of resources as it requires configuring

various parameters with impeccable balance which is time consuming and challenging practice. [20] performs an

analysis to explore various parameters of Hadoop under varying configurations and settings to attain better

throughput with an emphasis on execution time and throughput for scheduling jobs. By conducting experiments

compare default scheduling methods and to study the behaviour of configuration of parameters [20] recommends

optimum value for individual cases.

 To overcome the time consuming process in Hadoop to configure the parameters of MapReduce jobs having

non-linear and multi-dimensional structures [23] propose predators for 23 parameters as a capable directed

optimizer for configuration by utilizing execution time of job and categorizing the parameters with aim of reducing

search time by controlling the rate of visiting un-favourable blocks.

 Hadoop provides enormous distinct configuration properties which affect its performance and keeping this in

22 | P a g e

view [24] discuss few methods used for tuning hardware and software components on TeraSort dataset on two

different clusters with different configurations which shows an increase in processing up to 4.2x on one cluster and

2.1x on another cluster.

 [26] presents a detailed study on energy efficacy in MapReduce for different loads which results in

pinpointing the factors: replication factor of block size along with distributed file system, CPU intensive and I/O

intensive to conclude that a noble tuning of parameters results in enhanced performance along with better

utilization of resources for energy saving.

 [27] assimilates on going practices in semantic search and machine learning on the basis of ontologies to

propose a new approach with an aim to enhance performance of applications in Hadoop to tune the parameters by

categorizing them according to influence on system performance, Hadoop phases and workloads characteristics.

III. TAXONOMY OF TUNING HADOOP PARAMETERS

When Hadoop is installed it provides number of configurations for setting up the parameters having default

values in xml file. The parameters may be of cluster level or job level. Furthermore based on influence behaviour

the parameters can be classified as: Map, Reduce and intermediary phases where intermediary phases consist of

shuffling and merging. The default values of parameters in Hadoop are further configurable and can be customised

through Coding, updating xml files and passing values at execution time [21] . The parameters in XML files:

conf/hdfs-site, core-site, and mapred-site in Hadoop can be customised by user if they are not protected using

keyword final. With help of methods hadoop –D and hadoop -conf the default configuration value of parameter

can be changed at run time using:

hadoop jar examples.jar example_name –D name_of_property(key)= new_value

 Hadoop offers users to configure value of parameter using Configuration Class through coding. To create an

object of class the syntax is:

ReflectionUtils.newInstance(Class<T> theClass, Configuration conf)

Parameters configuration in Hadoop can be classified on the basis of workload characteristics like I/O, CPU,

memory, network and number of mappers as depicted in Table-I, Table-II and Table-III.

Table I: Memory associated parameters

Phase Parameter Initial value Function

Sort/

Shuffle

mapreduce.task

.io.sort.factor

10 Choose number of streams to be merged at one time while

sorting the files and determines handling the number of open

file.

 mapreduce.task

.io.sort.mb

512 Decides on the size of memory requisite at time of sort.

Map mapreduce.map

.memory.mb

1536 Decides on how much memory to limit for map task.

 mapreduce.map

.java.opts

Xmx1024M Decide on size of heap memory for maps child java virtual

machines.

Reduce mapreduce.redu

ce.memory.mb

3072 Choose amount of memory for reduce task.

23 | P a g e

 mapreduce.redu

ce.java. opts

Xmx2560M Decide on size of heap memory for reduce task child java

virtual machines.

Table II: I/O associated parameters

Phase Parameter Initial value Function

Cluster level/

Merge/Shuffle

dfs.blocksize 128 MB

134217728 bytes

Responsible for choosing size of block for a file.

dfs.replication 3 Decide about replication factor of a block.

dfs.replication.interval 3 Decides period at which replication takes place in

datanodes

dfs.data.dir ${hadoop.tmp.dir}/dfs/da

ta

Decides where a data node can store the blocks on

its local filesystem.

fs.default.name file:/// Universal Resource Identifier that decides the

FileSystem execution structure as well as authority.

dfs.default.name -- It holds NameNodes location. It is requisite of

HDFS and MapReduce.

io.sort.record.percent 0.05 Agree on the fraction for io.sort.mb to acquire at

time of sorting the file.

io.sort.spill.percent 0.80 Choose the proportion of spill while sorting

operation.

io.sort.factor 10

Choose number of total streams to merge at one

time during sort operation of files.

io.file.buffer.size 4096 Decides on amount of data to buffer at time of read

plus write processes.

mapred.min.split.size 64MB Require each map to process 2 hdfs blocks (1-block

= 64MB)

io.sort.mb 100 Decide on memory of buffer mandatory while

performing file sorting.

Job Level/ Core

Job

mapred.output.com

pression.type

RECORD Choose type of compression for output.

mapred.output.com

pression.codec

org.apache.hadoop.io.co

mpress.DefaultCodec

Accountable to codec while compressing the job

output.

Map mapred.compress.

map.output

False Results in deciding the map output compressed or

else?

mapred.map.output.compressio

n.codec

org.apache.hadoop.io.co

mpress.DefaultCodec

Choose codec during compressing of job outputs

for map phase.

Table III: CPU associated parameter

Phase Parameter Initial value Function

Map mapred.map.tasks 2 No. of mappers tasks per job

mapred.TaskTracker.map.tasks

.maximum

2 No. of mapper tasks for job to be executed by a task tracker simultaneously

mapred.map.tasks.speculative. True No. of multi-instances of mappers for parallel execution.

24 | P a g e

execution

Reduce mapred.reduce.tasks 1 No. of reducers tasks required per job

mapred.TaskTracker.reduce.tas

ks.maximum

2 No. of reducer tasks for job to be executed by a task tracker simultaneously

mapred.reduce.tasks.speculativ

e.execution

True No. of multi-instances of reducers for parallel execution.

Core

Job

mapred.output.compress False Required output of job to be compressed or not?

mapred.output.compression.typ

e

BLOCK Whether job outputs to be compressed as SequenceFiles? Must be NONE,

RECORD or BLOCK.

mapred.reduce.slowstart.compl

eted.maps

0.0

0.5

1.0

Value 0.0 starts the reducers immediately, 0.5 start the reducers while about

half of the mappers’ tasks are done, and value of 1.00 wait until mappers

finished the job.

mapreduce.map.output.compre

ss

False Whether to compress map Outputs or not?

IV. FRAMEWORK

Proposed framework given below will enhance the overall performance of jobs in Hadoop on the basis of workload

of job and modified parameter values in heterogeneous environment.

Algorithm:

1. Run Hadoop MapReduce job(s) along with default values of parameters to analyse the performance and store

these results on basis of workload characteristics like I/O, CPU, memory and time taken.

2. Apply changes to modify default values and then again execute the job(s) to analyse the performance and store

these results.

3. Compare results of both situations i.e. with default parameter values and with modified parameter values to

analyse whether performance is tuned or not?

4. If results show improvement in performance then repeat step 2 till results are in better tuning than default values,

else go to step 5.

5. Exit

Fig. 2: Framework to modify values

25 | P a g e

 Following set of modified values for parameters given in Table-IV are used for running different Hadoop jobs.

Table- IV: Modified values

Parameter
Default

Value

Modified value of

parameter

1st 2nd 3rd

dfs.blocksize 64 128 256 512

dfs.replication 3 5 7 9

io.sort.factor 10 20 30 50

io.sort.mb 100 120 150 170

Execution time

of job
1000 550 450 355

Improvement

over baseline

(%)

N.A 30 55 64.5

V. EXPERIMENTS AND RESULTS

 Using modified values experiments were carried on Hadoop 1.2.1 multi-cluster nodes using Ubuntu 12.04(LTS)

with one master and five slave nodes. The master node is Intel(R) Core(TM) i7-2630 QM CPU @ 2.00 GHz, and

8 GB of RAM.

Table- V: Experimental setup configuration

Node Processor RAM

Master Intel(R) Core(TM) i7-2630 QM CPU @ 2.00 GHz 8GB

Slave-1 Pentium(R) Dual-Core CPU E5800 @ 3.20 GHz 3GB

Slave-2 Intel(R) Pentium(R) Dual CPU E2160 @ 1.80 GHz 1GB

Slave-3 Pentium(R) Dual-Core CPU E5800 @ 3.20 GHz 2GB

Slave-4 Intel(R) Pentium(R) D CPU 2.80 GHZ 1GB

Slave-5 Pentium(R) Dual-Core CPU E5800 @ 3.20 GHz 2GB

 Results of experiments to calculate execution time, Total CPU time along with CPU utilization by jobs TeraSort,

WordCount and Pi are shown in Table-VI. CPU utilization by these jobs with default values is shown in Fig.3.

CPU utilization = (Total CPU time/Execution time) x 100

Table- VI: Performance on Single-cluster node

Parameter TeraSort WordCount Pi

Execution time 2050 1170 14

Total CPU time 398.18 219.25 1.65

CPU utilization 19.42 18.73 11.78

26 | P a g e

 Furthemore to anlyze the performance of suggested and modified values of parameters (Table-IV) for different

jobs on multi-cluster heterogeneous environment experimental results are shown in Table-VII.

Fig. 3: Evaluation of CPU utilization single-cluster node

 Table-VII: Performance on Multi-cluster nodes

Parameter

Job

No. of Nodes

1 2 3 4 5

Execution

time

TeraSort 2050 388 131 473 426

WordCount 1170 762 190 426 182.4

Pi 14 12 19 17 23

Total

CPU time

TeraSort 398.18 111.50 100.35 125.45 102.86

WordCount 219.25 177.29 132.75 127.44 126.9

Pi 1.65 1.32 1.45 1.06 1.35

CPU

utilization

TeraSort 19.42 28.73 76.60 26.52 65.93

WordCount 18.73 23.27 69.87 29.91 69.57

Pi 11.78 11 7.63 6.23 5.87

27 | P a g e

Fig. 3: Execution time, CPU time and CPU utilization of muti-node cluster

CONCLUSION AND FUTURE WORK

The default parameter configuration of Hadoop is not appropriate for all type of clusters especially heterogeneous.

Fine tuning Hadoop Parameters in right manner can enhance data locality and amount of data processed to improve

the performance of resources. In future, further to improve data locality and amount of data processed there is need

to design a frame that offers better arrangements of parameter configuration setting via executing different Hadoop

jobs with varying parameter sets. There is need to design a novel scheduling framework to offer enhanced data

locality as well as enriched amount of data processing to improve overall performance of Hadoop in

Heterogeneous multi node cluster. Proposed framework along with better combination of values for different

parameters can enhance the performance of Hadoop in heterogeneous environment.

REFERENCES

[1] S. Kurazumi, T. Tsumura, S. Saito, and H. Matsuo, “Dynamic processing slots scheduling for I / O intensive jobs of Hadoop

MapReduce,” in 2012 Third International Conference on Networking and Computing, 2012, pp. 288–292.

[2] C. A. Hansen, “Optimizing Hadoop for the cluster,” 2012.

[3] T. White, Hadoop: The Definitive Guide, 4th ed., vol. 4. O’Reilly Media, 2015.

[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file system,” in 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies, MSST2010, 2010, pp. 1–10.

[5] M. Vaidya, “Parallel Processing of cluster by Map Reduce,” International Journal of Distributed and Parallel Systems, vol. 3, no. 1, pp.

167–179, 2012.

[6] X. Zhao, L. Liu, Q. Zhang, and X. Dong, “Improving MapReduce Performance in a Heterogeneous Cloud : A Measurement Study,” in

2014 IEEE 7th International Conference on Cloud Computing, 2016, no. June 2014, p. 8.

[7] V. Kalavri and V. Vlassov, “MapReduce: Limitations, optimizations and open issues,” in Proceedings - 12th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2013, 2013, pp. 1031–1038.

[8] A. Sharma and G. Singh, “A Review on Data locality in Hadoop MapReduce,” in 5th IEEE International Conference on Parallel,

Distributed and Grid Computing(PDGC-2018), 2018, pp. 723–728.

[9] T. L. S. R. Krishna, D. T. Ragunathan, and S. K. Battula, “Performance Evaluation of Read and Write Operations in Hadoop Distributed

File System,” in 2014 Sixth International Symposium on Parallel Architectures, Algorithms and Programming, 2014, pp. 110–113.

[10] A. Pal, P. Agrawal, K. Jain, and S. Agrawal, “A Performance Analysis of MapReduce Task with Large Number of Files Dataset in Big

Data Using Hadoop,” in 2014 Fourth International Conference on Communication Systems and Network Technologies, 2014, pp.

587–591.

[11] J. Xie et al., “Improving MapReduce Performance through Data Placement in Heterogeneous Hadoop Clusters,” in 2010 IEEE

International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010, p. 9.

[12] B. T. Rao, N. V Sridevi, V. K. Reddy, and L. S. S. Reddy, “Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing,”

28 | P a g e

Global Journal of Computer Science and Technology, vol. 11, no. 81–87, 2011.

[13] J. Wang, Y. Yao, Y. Mao, B. Sheng, and N. Mi, “FRESH : Fair and Efficient Slot Configuration and Scheduling for Hadoop Clusters,”

in 2014 IEEE 7th International Conference on Cloud Computing, 2014, no. June, p. 9.

[14] K. Kc and V. W. Freeh, “Tuning Hadoop map slot value using CPU and IO metrics,” in Big Data Benchmarks, Performance

Optimization, and Emerging Hardware: 4th and 5th Workshops, BPOE 2014, J. Zhan, R. Han, and Chuliang Weng, Eds. Springer,

2013, pp. 141–153.

[15] Y. Yao, J. Wang, B. Sheng, and N. Mi, “Using a Tunable Knob for Reducing Makespan of MapReduce Jobs in a Hadoop Cluster,” in

2013 IEEE Sixth International Conference on Cloud Computing, 2013, p. 8.

[16] Z. Zhang, L. Cherkasova, and B. T. Loo, “Getting More for Less in Optimized MapReduce Workflows,” in 2013 IFIP/IEEE

International Symposium on Integrated Network Management (IM 2013), 2014, no. May, p. 8.

[17] K. Yamazaki, R. Kawashima, S. Saito, and H. Matsuo, “Implementation and Evaluation of The JobTracker Initiative Task Scheduling on

Hadoop,” in 2013 First International Symposium on Computing and Networking, 2013, pp. 622–626.

[18] Y. Chen, A. Ganapathi, and R. H. Katz, “To Compress or Not To Compress Compute vs . IO tradeoffs for MapReduce Energy

Efficiency,” in Green Networking ’10 Proceedings of the first ACM SIGCOMM workshop on Green networking, 2010, pp. 23–28.

[19] G. Sasiniveda and R. N, “Performance Tuning and Scheduling of Large Data Set Analysis in Map Reduce Paradigm by Optimal

Configuration using Hadoop,” International Journal of Computer Applications, vol. 70, no. 21, pp. 37–41, 2013.

[20] G. Bansal, A. Gupta, U. Pyne, M. Singhal, and S. Banerjee, “A Framework for Performance Analysis and Tuning in Hadoop Based

Clusters,” in Smarter Planet and Big Data Analytics Workshop (SPBDA 2014), held in conjunction with International Conference on

Distributed Computing and Networking (ICDCN 2014), Coimbatore, INDIA, 2014, p. 6.

[21] C. Li et al., “An Adaptive Auto-Configuration Tool for Hadoop,” in 2014 19th International Conference on Engineering of Complex

Computer Systems, 2014, pp. 69–72.

[22] D. Wu and A. Gokhale, “A Self-Tuning System based on Application Profiling and Performance Analysis for Optimizing Hadoop

MapReduce Cluster Configuration,” in 20th Annual International Conference on High Performance Computing, 2013, pp. 89–98.

[23] K. Wang, X. Lin, and W. Tang, “Predator - An Experience Guided Configuration Optimizer for Hadoop MapReduce,” in 2012 IEEE 4th

International Conference on Cloud Computing Technology and Science Predator, 2012, pp. 419–426.

[24] S. B. Joshi, “Apache Hadoop Performance-Tuning Methodologies and Best Practices,” in ICPE ’12 Proceedings of the 3rd ACM/SPEC

International Conference on Performance Engineering, 2012, pp. 241–242.

[25] J. Yan, X. Yang, R. Gu, C. Yuan, and Y. Huang, “Performance Optimization for Short MapReduce Job Execution in Hadoop,” in 2012

Second International Conference on Cloud and Green Computing, 2012, pp. 688–694.

[26] B. Feng, J. Lu, Y. Zhou, and N. Yang, “Energy Efficiency for MapReduce Workloads : An In-depth Study,” in ADC ’12 Proceedings of

the Twenty-Third Australasian Database Conference - Volume 124, 2015, no. April, pp. 61–70.

[27] A. Bonifacio, A. Menolli, and F. Silva, “Towards an Ontology-Based Semantic Approach to Tuning Parameters to Improve Hadoop

Application Performance,” IT in Industry, vol. 2, no. 2, pp. 56–61, 2014.

[28] H. Yang, Z. Luan, W. Li, D. Qian, and G. Guan, “Statistics-based Workload Modeling for MapReduce,” in 2012 IEEE 26th

International Parallel and Distributed Processing Symposium Workshops & PhD Forum, 2012, pp. 2043–2051.

[29] S. Babu, “Towards Automatic Optimization of MapReduce Programs,” in SoCC ’10 Proceedings of the 1st ACM symposium on Cloud

computing, 2010, pp. 137–142.

29 | P a g e

AUTHORS PROFILE

Gurwinder Singh MCA, M.Phil, M.Tech(IT) working as Assistant Professor in Sikh National College Banga and

doing research in School of Computer Applications, Lovely Professional University Punjab, India. He is having more

than 13-years of teaching experience. He is a member of CSTA.

Publications:

1. “A Review of Scheduling Algorithms in Hadoop” published in Proceedings of ICRIC 2019 by Springer, Lecture Notes in Electrical

Engineering-597.

2. “A Review on Data locality in Hadoop MapReduce” published in IEEExplore.

3. “ A Review of Big Data Challenges and Preserving Privacy in Big Data” published in proceedings of 2nd International Conference on Data and

Information Sciences (ICDIS 2019) by Springer ”Advances in Data and Information Sciences”.

4. “A Study on Big Data Tools and Applications” published in IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN:

2348-2281 (ONLINE)

5. “Big Data Applications” published in International Journal of Advance Research in Science and Engineering (IJARSE) Vol. Issue 10 October

2017.

Dr. Anil Sharma MCA, Ph.D. working as Professor in School of Computer Applications, Lovely Professional

University Punjab, India. He received his doctorate from HPU Shimla. He has over 18 years of Academic experience. He

has published more than 10 research papers in reputed journals. His area of interest includes Databases, Cloud

Computing, and IOT.

