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ABSTRACT 

Body sensors, also known as wearable sensors, are increasingly often employed for medical diagnosis and 

continuous physiological monitoring as ingestible, wearable, and implanted devices. They do, however, 

generally have a limited budget. Recent technological breakthroughs may give a way to bypass these devices' 

resource limitations by linking them to smart phones and cloud services. This study offers simulation findings on 

investigating the viability of 24-hour running time and parallel user support for cloud-enabled apps to evaluate 

the feasibility of cloud-enabled body sensor networks. 

 

I. INTRODUCTION 

Networking sensors around the human body for various healthcare applications has recently attracted attentions 

of many researchers [1-3]. These sensors often have limited power, storage, and processing resources, hindering 

them from storing large amounts of long-term sensing data and analyzing complex scenarios that require data 

from multiple sensors. One possible solution to the problem is to make use of computing resources available to 

most of the general public, such as smartphones (i.e. mobile health or m-Health [4]) and cloud computing 

services [5, 6]. Fig. 1 Illustrates a schematic of cloud-connected body sensor networks.. 

 

 

 

 

 

 

 

 

Figure 1. Ingestible and wearable technologies contribute to the formation of cloud-enabled body sensor networks. 

 

This study looks at two scenarios in which cloud-enabled ingestible and wearable devices are used in healthcare. The 

first scenario depicts how cloud computing resources may be used to improve the diagnostic capabilities of ingestible 
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devices. In the second scenario, a wearable device uses cloud storage resources to provide continuous and long-term 

physiological monitoring. 

 

II. BODY SENSORS 

A. Ingestible Device 

A wireless capsule endoscope (WCE) is a typical example 

of ingestible body sensors, where the miniaturized device allows the inspection of patients’ gastrointestinal (GI) 

tract unobtrusively [7]. WCE can be equipped with therapeutic features such as the ability to halt GI bleeding 

through the use of a balloon tamponade effect. [8]. The increasing functionality challenges the design of the 

WCE. For example, image processing algorithms need to be implemented on the device to recognize bleeding 

site in real time for the therapeutic function to be initiated instantly. The limited processing power of the device 

poses strict restrictions to the algorithm design and may hinder the recognition performance of the device. This 

problem is exacerbated when constructing WCE systems for patients with complex GI problems. 

To lessen the storage, analysis, and browsing overhead of the WCE, one recent paper suggested a mobile-cloud 

aided video summarizing architecture. [9]. Only different frames are transferred to the cloud for further 

processing, and a lightweight redundant frame removal operation can be performed on the mobile phone. The 

design was able to reduce the overall computation time on processing and transmission, save energy on the 

mobile device, and reduce the storage cost [9]. 

A recent publication from our group tackled a polyp classification problem with a two-step approach based on 

convolutional neural network (CNN) [10]. The system first recognizes frames in colonoscopy pictures that include 

polyps, and then categorizes these polyps into histological groups. In comparison to endoscopists' diagnosis on 

categorising frames into non-polyp, adenoma, and hyperplasia, this work used high-performance computer resources 

to speed up the algorithm's processing speed, and obtained equivalent precision and a higher recall rate. This CNN-

based deep model can be difficult to be deployed on a mobile device with limited computing resources. Nevertheless, 

with the aid of cloud computing resources, this algorithm may be incorporated with a WCE system for colorectal 

cancer screening. As conceptually shown in Fig. 2, the mobile device can perform the pre-processing by selecting 

informative images upon receiving video data captured by the capsule and upload them to the cloud. On the cloud 

side, the CNN-based polyp 

lassification model will be implemented to determine polyp histology types. The cloud services also provide resources 

for any further improvement of the polyp classification algorithm. 

 

 

 

 

 

 

 

 

Figure 2. Illustration of a cloud-enabled WCE system for screening and classification of colorectal polyps. 
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B.  Wearable Device 

Continuous and long-term physiological monitoring can provide insights into identifying transient physiological 

events as well as monitoring patients who are critically ill or susceptible to major adverse effects. Multiple body 

sensors are often needed for a single application [11, 12]. 

For example, the wearable armband device invented by our group can sample electrocardiogram (ECG) and 

photoplethysmogram (PPG) by Ag-Ag/Cl electrodes and infrared sensor respectively [12]. The device was 

further modified to include an accelerometer and gyroscope to collect 6-axis motion signals. The newly 

integrated motion sensor provides activity information, which can be used for mitigating motion artifacts during 

data analysis [13]. Data can be stored on device’s micro-SD card into 10-minute recording files, approximately 

2.65 MB each. To enable the wireless connection of the device, a Bluetooth transceiver module is integrated. 

In this paper, we further presented an Android mobile application that manages the Bluetooth connection of the 

armband and provides an interface between the device and the cloud service, as shown in Fig. 3. Sensor 

recordings can be transferred to the mobile device continuously for real-time display and storage. Stored data 

files can be conveyed to the cloud storage service. 

 

 

 

 

 

 

 

 

Figure 3. A cloud-enabled wearable device for continually monitoring several physiological signals is 

depicted. 

 

Two types of cloud services were considered: a commercial cloud storage service and a locally-hosted cloud 

storage service. The offered mobile software development kit was used to accomplish the direct sending of 

armband recorded data files to a commercially accessible cloud storage service, Amazon Simple Storage Service 

(Amazon S3) [14]. (SDK). One advantage of using commercially available cloud storage service is that 

concurrent user uploading can be handled by the cloud service, and thus reduces development workload. 

A cloud service was also simulated on a local workstation with main functions shown in Fig. 4. The Connection 

Management Unit uses a multi-thread scheme to handle users’ requests via socket connections. User Identity Database 

Unit utilizes a lightweight relational database [15] to store users’ identity information for registration and verification. 

It also keeps a file address for each user pointing to a corresponding location in the File Storage Unit. Fig. 5 shows the 

protocol for establishing a successful connection. The mobile device starts the connection by sending a connection 

request with user’s identity information. The cloud service verifies the user's identification and reacts appropriately. 

Unverified connections will be terminated, but users who have verified their identities will be permitted to start the 
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data uploading process, which will be followed by an endmarker to signal completion. A successful uploading session 

terminates upon the mobile device receives a recipient confirmation from the cloud service. 

 

 

 

 

 

 

 

 

 

 

Figure 4. An overview of the design of locally hosted cloud services. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Interactions between the mobile device and the cloud service for data upload. 

III. EXPERIMENTS AND RESULTS 

A. Experiments 

Experiments were conducted to simulate the following scenarios: 1) a single system supporting a 24-hour recording 

session (single-user), and 2) 50 users concurrently accessing the cloud service (multi-user). The implementation of 

transferring WCE picture files and wearable sensor data files from the mobile device to the cloud services would be 

similar since the data was transferred in files. Experiments were conducted on armband sensor data, and similar 

observations can be made when uploading endoscopic images. 

1) Single-user Test 

To test the connectivity between a mobile device and Amazon S3, pre-recorded 24-hour armband monitoring 

data was kept on a Samsung Note 2 Smartphone. A mobile application was set to automatically upload one data 

file containing 10-minute continuous sensing data every 10 minutes over a 24-hour period, simulating the data 

transmission for one user during one day. 
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2) Multi-user Tests 

When considering the concurrent user access scenario which can happen during the population-based screening, 

multi-thread Python applications on a laptop were developed to emulate multiple users’ concurrent uploading 

requests for pre-recorded 10-minute sensor recording files. 

Two different tests were performed: 1) 50 concurrent users uploading files to the Amazon S3 periodically over a 

24-hour period; 2) different number of concurrent users (1, 10, 20, 30, 40, 50) uploading files to the locally 

hosted cloud service within the same local area network (LAN) for 10 independent sessions. Each file upload 

from all participating users was considered as an uploading session. The cloud service was hosted on a 

Windows workstation (3.30-GHz Intel Xeon CPU with 16 GB RAM). 

B. Results 

1) Single-user Test 

Each uploading job took less than 50 milliseconds, and the average time this user took to upload a file to Amazon S3 

for the test was 31 milliseconds. The variable network conditions might cause variations in uploading times. During 

the test, there was no transmission loss. 

 

2) Multi-user Tests 

A Python script was used to imitate 50 people uploading data to Amazon S3 at the same time throughout the 

course of a 24-hour period. Due to the formation of an initial connection, the first uploading job for all users 

took longer (16.373 0.641 s) than the succeeding uploading tasks. The average uploading time for each user was 

determined and presented in Fig. 7 for the succeeding sessions when there were 50 concurrent uploads. 

Variations in uploading time across each transmission session may be due to the varying network condition over 

the testing period. The initiations of uploading tasks from different users were not perfectly aligned for each 

session, which caused further variations. No transmission loss was noticed during the test. It can be noticed that 

the average time taken for one user to upload a file when there are 50 concurrent users was much longer than the 

result shown in Fig. 6 for the single-user test. The difference can be caused by several reasons. First, the devices 

used in these two tests were different. An Android device was used for a single-user test, while multi-users were 

simulated from a laptop. The different connections to the Amazon S3 may cause the difference on uploading 

time. Second, the instantaneity of the wireless network introduced more uncontrolled variables into these two 

experiments. Thirdly, in the multi-user experiment, 50 users shared the same bandwidth, causing a reduced 

effective bandwidth for each user. The concurrent requests to the cloud service may introduce extra computation 

at the remote side, which may also contribute to the difference, although the effect of this factor is likely to be 

small considering the abundant resources cloud computing can offer. 

 

The mean and standard deviation were calculated during ten separate upload sessions with varying numbers of 

concurrent users. With the increasing number of concurrent users, the uploading time was increased. This was 

due to the increased computation at the server side to handle the increased number of requests. The increasing 

number of users also increased the network traffic, which might be another reason for the prolonged uploading 

time. When considering the 50 concurrent-user case for both Amazon S3 and locally hosted cloud service, 

commercial storage service achieved over 5 times faster data uploading speed than the locally hosted service. 
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For the locally hosted service, transmission protocol between the mobile device and the local cloud service 

prolonged the data uploading time, and all increased data traffic was confined in the same LAN which might 

further slowdown the transmission process. The superior resources available for Amazon S3 were another big 

contributor to the uploading time difference. The results showed that the self-designed service has the ability to 

support 50 concurrent users uploading tasks based on the current setting. 

 

Table I. Data Uploading time with Different Number of Concurrent users Across 10 

Independent Sessions 

Number of Mean Uploading Time by Each User 

Concurrent Users (Mean ± Standard Deviation in seconds) 

1 0.382 ± 0.040 
  

10 2.393 ± 0.306 
  

20 4.694 ± 0.722 
  

30 6.877 ± 0.944 
  

40 10.253 ± 2.242 
  

50 14.290 ± 3.737 
  

 

IV. CONCLUSION 

This paper focuses on introducing two examples for cloud-enabled body sensor network applications in 

supporting advanced ingestible sensor functions and continuous and long-term physiological monitoring. By 

transferring continuously sampled physiological signals in a 10-minute file format, the cloud-enabled wearable 

system has the potential to support long-term monitoring. In future, motion artifacts removal function, enabled 

by motion signals, can be incorporated to further prolong the lifetime of the wearable devices. Another future 

direction is to utilize the cloud computing resources for data management collected from heterogeneous sources. 

Point-of-care (POC) devices that do coagulation tests, for example, have been utilised to assist physicians with 

patient management. Surgical patients have benefited from POC testing and transfusion algorithms, which have 

reduced transfusion needs and blood loss [16]. Advanced algorithms for integrating POC testing findings with 

other data types to aid in clinical decision making can be supported with the ample computational capabilities. 
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