

316 | P a g e

Efficient Client-Side Deduplication of Encrypted Data with

Public Auditing in Cloud Storage

AHSOKKUMAR. K [GUIDE]

SUGAVATHI.S BE -Computer Science And Engineering,Sengunthar Engineering College.

RAMYA.C BE-Computer Science And Engineering,Sengunthar Engineering College.

RAMYA.A BE-Computer Science And Engineering,Sengunthar Engineering College.

ABSTRACT

At present, there is a considerable increase in the amount of data stored in storage services,along with dramatic

evolution of networking techniques. In storage services with huge data, the storageservers may want to reduce the

volume of stored data, and the clients may want to monitor the integrity oftheir data with a low cost, since the cost

of the functions related to data storage increase in proportion to the size of the data. To achieve these goals, secure

deduplication and integrity auditing delegation techniqueshave been studied, which can reduce the volume of data

stored in storage by eliminating duplicated copiesand permit clients to efficiently verify the integrity of stored files

by delegating costly operations to a trustedparty, respectively. So far many studies have been conducted on each

topic, separately, whereas relativelyfew combined schemes, which supports the two functions simultaneously, have

been researched. In thispaper, we design a combined technique which performs both secure deduplication of

encrypted data andpublic integrity auditing of data. To support the two functions, the proposed scheme performs

challenge-response protocols using the BLS signature based homomorphic linear authenticator. We utilize a third

partyauditor for performing public audit, in order to help low-powered clients. The proposed scheme satisfies allthe

fundamental security requirements. We also propose two variances that provide higher security andbetter

performance.

INDEX TERMS:Cloud storage, Cryptography, Data security, Information security, Public audit,

Securededuplication

 INTRODUCTION

IN cloud storage services, clients outsource data to aremote storage and access the data whenever they needthe data.

Recently, owing to its convenience, cloud storageservices have become widespread, and there is an increase inthe

use of cloud storage services. Well-knowncloud servicessuch as Dropbox and iCloud are used by individuals

andbusinesses for various applications. A notable change ininformation-based services that has happened recently is

thevolume of data used in such services due to the dramatic evo-lution of network techniques. For example, in 5G

networks,gigabits of data can be transmitted per second, which meansthat the size of data that is dealt by cloud

storage servicewill increase due to the performance of the new networkingtechnique. In this viewpoint, we can

characterize the volumeof data as a main feature of cloud storage services. Many service providers have already

prepared high resolution contentsfor their service to utilize faster networks. For secure cloudservices in the new era,

it is important to prepare suitablesecurity tools to support this change.Larger volumes of data require higher cost for

managingthe various aspects of data, since the size of data influencesthe cost for cloud storage services. The scale of

317 | P a g e

storageshould be increased according to the quantity of data to be volume. Translations and content mining are

permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission.This article has been accepted for publication in a future issue of this journal, but has not been fully

edited. Content may change prior to final publication. In this viewpoint, it is desirable for storage servers toreduce

the volume of data, since they can increase their profitby reducing the cost for maintaining storage. On the

otherhand, clients are mainly interested in the integrity of theirdata stored in the storage maintained by service

providers.To verify the integrity of stored files, clients need to performcostly operations, whose complexity

increases in proportionto the size of data. In this viewpoint, clients may want to verify the integrity with a low cost

regardless of the size ofdata. Owing to the demands of storage servers and clients,many researches on this topic are

available in the literature.To reduce the volume of data, deduplication has to be per-formed in servers so that the

storage space efficiency can beimproved by removing duplicated copies. In these concept of proofs of ownership

(PoW). In Bellare et al.formalized a class of message-locked encryptions includingan existing convergent

encryption (CE), and presented a newdeduplication technique called DupLESS which is the firstdeduplication

mechanism that can ensure semantic security.When clients use cloud storage services, the integrity ofstored data is

the most important requirement. In other words,clients want to be guaranteed about the integrity of their datain the

cloud. In cloud storage services, we cannot excludethe possibility of weak cloud servers, which are vulnerableto

internal and external security threats. In the case of dataloss due to some incident, weak servers may try to hide

thefact that they lost some data, which were entrusted by theirclients. More seriously, servers delete rarely accessed

users’data in order to increase the profit. Therefore, it is a naturalrequirement of clients to periodically check the

current stateof their data. To do this in practice, we need a way toefficiently check the integrity of data in remote

storage. secure deduplication and integrity auditing are fundamental functions required in cloud storage services.

Hence, individual researches have been actively conducted on these twotopics. However, relatively few studies have

been conductedfor designing a combined scheme that can support these twofunctions at the same time. The

fundamental goal of the de-sign of a combined model is to guarantee less overhead thana trivial combination of

existing schemes. In particular, thegoal of this paper is to improve the cost of both computationand

communication.In this paper, we design a new scheme for secure andefficient cloud storage service. The scheme

supports bothsecure deduplication and integrity auditing in a cloud envi-eonment. In particular, the proposed scheme

provides securededuplication of encrypted data. Our scheme performs PoWfor secure deduplication and integrity

auditing based on thehomomorphic linear authenticator (HLA), which is designedusing BLS signature.

LITERATURE REVIEW

1)CONFUCIOUS: A TOOL SUPPORTING COLLABORATIVE SCIENTIFIC WORKFLOW

COMPOSITION

 A research is an enabling collaboration technique in the aspect of collaboration provenance management and

reproducibility. Based on scientific collaboration ontology, it proposed a service-oriented collaboration model

supported by a set of collaboration primitives and patterns. The collaboration protocols are then applied to support

effective concurrency control in the process of collaborative workflow composition. It also reports the design and

development of confucious, a service-oriented collaborative scientific workflow composition tool that extends an

open-source, single-user environment.

TECHNOLOGY:Floor granting algorithm,Locking Algorithm

DISADVANTAGE : Do not support scientific workflow application.

318 | P a g e

2)SECURE AND PRACTICAL OUTSOURCING OF LINEAR PROGRAMMING IN CLOUD

COMPUTING

 This system investigates secure outsourcing of widely applicable Linear Programming (LP) computations.

In order to achieve practical efficiency, this mechanism design explicitly decomposes the LP computation

outsourcing into public LP solvers running on the cloud and private LP parameters owned by the customer. The

resulting flexibility allows us to explore appropriate security or efficiency tradeoff via higher-level abstraction of LP

computationsthan the general circuit representation.

TECHNOLOGY : RS algorithm

DISADVANTAGE : DES algorithm used to share the files, with high Cost.

3) REAL TIME TASKS ORIENTED ENERGY-AWARE SCHEDULING IN VIRTUALIZED

CLOUDS

Energy-aware scheduling algorithms developed for clouds are not real-time task oriented, thus lacking the

ability of guaranteeing system schedule ability. To address this issue, this system used a novel rolling-horizon

scheduling architecture for real-time task scheduling in virtualized clouds. Based on its scheduling architecture, it

develop a novel energy-aware scheduling algorithm named EARH for real-time, aperiodic, independent tasks. The

EARH employs a rolling-horizon optimization policy and can also be extended to integrate other energy-aware

scheduling algorithms. Furthermore, it propose two strategies in terms of resource scaling up and scaling down to

make a good trade-off between task’s schedule ability and energy conservation.

TECHNOLOGY :Energyaware scheduling pseudocode, Pseudocode

of energy-efficient scheduling

DISADVANTAGES : Not improve the scheduling quality, high energy.

4) MEETING DEADLINES OF SCIENTIFIC WORKFLOWS IN PUBLIC CLOUDS WITH

TASKS REPLICATION

The elasticity of Cloud infrastructures makes them a suitable platform for

execution of deadline-constrained workflow applications, because resources available to the application can be

dynamically increased to enable application speed up. Existing research in execution of scientific workflows in

Clouds either try to minimize the workflow execution time ignoring deadlines and budgets or focus on the

minimization of cost while trying to meet the application deadline. However, they implement limited contingency

strategies to correct delays caused by underestimation of tasks execution time or fluctuations in the delivered

performance of leased public Cloud resources.

TECHNOLOGY : TheBioinformatics,PC(PartialCriticalPath)technique,PBTSalgorithm

DISADVANTAGE: Not support scientific workflow application, underestimated execution

time.

319 | P a g e

5) COST-DRIVEN SCHEDULING OF GRID WORKFLOWS USING PARTIAL CRITICAL

PATHS

 One of the most challenging problems in utility Grids is workflow scheduling, i.e., the problem of satisfying

the QoS (Quality of Service) of the users as well as minimizing the cost of workflow execution. In this system, it

propose a new QoS-based workflow scheduling algorithm based on a novel concept called Partial Critical Paths

(PCP), that tries to minimize the cost of workflow execution while meeting a user-defined deadline. The PCP

algorithm has two phases: in the deadline distribution phase, it recursively assigns sub deadlines to the tasks on the

partial critical paths ending at previously assigned tasks, and in the planning phase it assigns the cheapest service to

each task while meeting its sub deadline.

TECHNOLOGY: Partial critical path algorithm, Parents assigning,

Path assigning, Optimized path algorithm.

DISADVANTAGE : Not approximate execution and data transmission.

Advanced Encryption Standard (AES)

Definition

The Advanced Encryption Standard (AES) is an encryption algorithm for securing sensitive but unclassified

material by U.S. Government agencies and, as a likely consequence, may eventually become the de facto encryption

standard for commercial transactions in the private sector. (Encryption for the US military and other classified

communications is handled by separate, secret algorithms.)In January of 1997, a process was initiated by the

National Institute of Standards and Technology (NIST), a unit of the U.S. Commerce Department, to find a more

robust replacement for the Data Encryption Standard (DES) and to a lesser degree Triple DES. The specification

called for a symmetric algorithm (same key for encryption and decryption) using block encryption (see block cipher)

of 128 bits in size, supporting key sizes of 128, 192 and 256 bits, as a minimum. The algorithm was required to be

royalty-free for use worldwide and offer security of a sufficient level to protect data for the next 20 to 30 years. It

was to be easy to implement in hardware and software, as well as in restricted environments (for example, in a smart

card) and offer good defenses against various attack techniques.The entire selection process was fully open to public

scrutiny and comment, it being decided that full visibility would ensure the best possible analysis of the designs. In

1998, the NIST selected 15 candidates for the AES, which were then subject to preliminary analysis by the world

cryptographic community, including the National Security Agency. On the basis of this, in August 1999, NIST

selected five algorithms for more extensive analysis. These were:

MARS, submitted by a large team from IBM Research

RC6, submitted by RSA Security

Rijndael, submitted by two Belgian cryptographers, Joan Daemen and Vincent Rijmen

Serpent, submitted by Ross Andersen, Eli Biham and Lars Knudsen

http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci212062,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci211545,00.html
http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci212662,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci213893,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci213695,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci213594,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci213004,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci213004,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci213004,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci214273,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci523541,00.html

320 | P a g e

Twofish, submitted by a large team of researchers including Counterpane's respected cryptographer, Bruce

Schneier

 Implementations of all of the above were tested extensively in ANSI C and Java languages for speed and

reliability in such measures as encryption and decryption speeds, key and algorithm set-up time and resistance to

various attacks, both in hardware- and software-centric systems. Once again, detailed analysis was provided by the

global cryptographic community (including some teams trying to break their own submissions). The end result was

that on October 2, 2000, NIST announced that Rijndael had been selected as the proposed standard. On December 6,

2001, the Secretary of Commerce officially approved Federal Information Processing Standard (FIPS) 197, which

specifies that all sensitive, unclassified documents will use Rijndael as the Advanced Encryption Standard.Also

see cryptography, data recovery agent (DRA)

RELATED GLOSSARY TERMS: RSA algorithm (Rivest-Shamir-Adleman), data key, greynet (or

graynet), spam cocktail (or anti-spam cocktail), fingerscanning (fingerprint scanning),munging, insider

threat, authentication server, defense in depth, nonrepudiation

SYSTEM

http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci763124,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci213776,00.html
http://searchwinit.techtarget.com/sDefinition/0,,sid1_gci211723,00.html
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci212415,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci523541,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci213964,00.html
http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci214431,00.html
http://searchsecuritychannel.techtarget.com/sDefinition/0,,sid97_gci1527174,00.html
http://searchsecurity.techtarget.com/definition/RSA
http://searchsecurity.techtarget.com/definition/data-key
http://searchsecurity.techtarget.com/definition/greynet
http://searchsecurity.techtarget.com/definition/greynet
http://searchsecurity.techtarget.com/definition/greynet
http://searchsecurity.techtarget.com/definition/spam-cocktail
http://searchsecurity.techtarget.com/definition/fingerscanning
http://searchsecurity.techtarget.com/definition/munging
http://searchsecurity.techtarget.com/definition/insider-threat
http://searchsecurity.techtarget.com/definition/insider-threat
http://searchsecurity.techtarget.com/definition/insider-threat
http://searchsecurity.techtarget.com/definition/authentication-server
http://searchsecurity.techtarget.com/definition/defense-in-depth
http://searchsecurity.techtarget.com/definition/nonrepudiation

321 | P a g e

ARCHITECTURE:

Big Bang

In this approach, all or most of the developed modules are coupled together to form a complete software

system or major part of the system and then used for integration testing. The Big Bang method is very effective for

saving time in the integration testing process. However, if the test cases and their results are not recorded properly,

the entire integration process will be more complicated and may prevent the testing team from achieving the goal of

integration testing.

A type of Big Bang Integration testing is called Usage Model testing. Usage Model Testing can be used in

both software and hardware integration testing. The basis behind this type of integration testing is to run user-like

workloads in integrated user-like environments. In doing the testing in this manner, the environment is proofed,

while the individual components are proofed indirectly through their use.

Usage Model testing takes an optimistic approach to testing, because it expects to have few problems with

the individual components. The strategy relies heavily on the component developers to do the isolated unit testing

for their product. The goal of the strategy is to avoid redoing the testing done by the developers, and instead flesh-

out problems caused by the interaction of the components in the environment.

For integration testing, Usage Model testing can be more efficient and provides better test coverage than

traditional focused functional integration testing. To be more efficient and accurate, care must be used in defining

the user-like workloads for creating realistic scenarios in exercising the environment. This gives confidence that the

integrated environment will work as expected for the target customers.

Testing

The various levels of testing are

White Box Testing

White-box testing (also known as clear box testing, glass box testing, transparent box testing,

and structural testing) is a method of testing software that tests internal structures or workings of an application, as

opposed to its functionality (i.e. black-box testing). In white-box testing an internal perspective of the system, as

well as programming skills, are used to design test cases. The tester chooses inputs to exercise paths through the

code and determine the appropriate outputs. This is analogous to testing nodes in a circuit, e.g. in-circuit

testing (ICT).

While white-box testing can be applied at the unit, integration and system levels of the software

testing process, it is usually done at the unit level. It can test paths within a unit, paths between units during

322 | P a g e

integration, and between subsystems during a system–level test. Though this method of test design can uncover

many errors or problems, it might not detect unimplemented parts of the specification or missing requirements.

White-box testing is a method of testing the application at the level of the source code. The test cases are

derived through the use of the design techniques mentioned above: control flow testing, data flow testing, branch

testing, path testing, statement coverage and decision coverage as well as modified condition/decision coverage.

White-box testing is the use of these techniques as guidelines to create an error free environment by examining any

fragile code.

These White-box testing techniques are the building blocks of white-box testing, whose essence is the careful

testing of the application at the source code level to prevent any hidden errors later on. These different techniques

exercise every visible path of the source code to minimize errors and create an error-free environment. The whole

point of white-box testing is the ability to know which line of the code is being executed and being able to identify

what the correct output should be.

Levels

1. Unit testing. White-box testing is done during unit testing to ensure that the code is working

as intended, before any integration happens with previously tested code. White-box testing during unit testing

catches any defects early on and aids in any defects that happen later on after the code is integrated with the rest of

the application and therefore prevents any type of errors later on.

Integration testing. White-box testing at this level are written to test the interactions of each interface with each

other. The Unit level testing made sure that each code was tested and working accordingly in an isolated

environment and integration examines the correctness of the behaviour in an open environment through the use of

white-box testing for any interactions of interfaces that are known to the programmer.

Regression testing. White-box testing during regression testing is the use of recycled white-box test cases at the unit

and integration testing levels.

White-box testing's basic procedures involve the understanding of the source code that you are testing at a deep

level to be able to test them. The programmer must have a deep understanding of the application to know what kinds

of test cases to create so that every visible path is exercised for testing. Once the source code is understood then the

source code can be analysed for test cases to be created. These are the three basic steps that white-box testing takes

in order to create test cases:

323 | P a g e

1. Input, involves different types of requirements, functional specifications, detailed designing of documents,

proper source code, security specifications. This is the preparation stage of white-box testing to layout all

of the basic information.

2. Processing Unit, involves performing risk analysis to guide whole testing process, proper test plan, execute

test cases and communicate results. This is the phase of building test cases to make sure they thoroughly

test the application the given results are recorded accordingly.

3. Output, prepare final report that encompasses all of the above preparations and results.

Black Box Testing

Black-box testing is a method of software testing that examines the functionality of an

application (e.g. what the software does) without peering into its internal structures or workings

(see white-box testing). This method of test can be applied to virtually every level of software

testing: unit, integration,system and acceptance. It typically comprises most if not all higher level testing,

but can also dominate unit testing as well

Test procedures

Specific knowledge of the application's code/internal structure and programming knowledge in

general is not required. The tester is aware of what the software is supposed to do but is not aware of

how it does it. For instance, the tester is aware that a particular input returns a certain, invariable output

but is not aware of how the software produces the output in the first place.

Unit testing

In computer programming, unit testing is a method by which individual units of source code, sets of one or

more computer program modules together with associated control data, usage procedures, and operating procedures

are tested to determine if they are fit for use. Intuitively, one can view a unit as the smallest testable part of an

application. In procedural programming, a unit could be an entire module, but is more commonly an individual

function or procedure. In object-oriented programming, a unit is often an entire interface, such as a class, but could

be an individual method. Unit tests are created by programmers or occasionally by white box testers during the

development process.

Ideally, each test case is independent from the others. Substitutes such as method stubs, mock

objects, fakes, and test harnesses can be used to assist testing a module in isolation. Unit tests are typically written

and run by software developers to ensure that code meets its design and behaves as intended. Its implementation can

vary from being very manual (pencil and paper)to being formalized as part of build automation.

324 | P a g e

Testing will not catch every error in the program, since it cannot evaluate every execution path in any but

the most trivial programs. The same is true for unit testing. Additionally, unit testing by definition only tests the

functionality of the units themselves. Therefore, it will not catch integration errors or broader system-level errors

(such as functions performed across multiple units, or non-functional test areas such as performance).

Unit testing should be done in conjunction with other software testing activities, as they can only show the

presence or absence of particular errors; they cannot prove a complete absence of errors. In order to guarantee

correct behaviour for every execution path and every possible input, and ensure the absence of errors, other

techniques are required, namely the application of formal methods to proving that a software component has no

unexpected behaviour.

Software testing is a combinatorial problem. For example, every Boolean decision statement requires at least two

tests: one with an outcome of "true" and one with an outcome of "false". As a result, for every line of code written,

programmers often need 3 to 5 lines of test code.

 This obviously takes time and its investment may not be worth the effort. There are also many problems

that cannot easily be tested at all – for example those that are nondeterministic or involve multiple threads. In

addition, code for a unit test is likely to be at least as buggy as the code it is testing. Fred Brooks in The Mythical

Man-Month quotes: never take two chronometers to sea. Always take one or three. Meaning, if

two chronometers contradict, how do you know which one is correct?

Another challenge related to writing the unit tests is the difficulty of setting up realistic and useful tests. It

is necessary to create relevant initial conditions so the part of the application being tested behaves like part of the

complete system. If these initial conditions are not set correctly, the test will not be exercising the code in a realistic

context, which diminishes the value and accuracy of unit test results.

To obtain the intended benefits from unit testing, rigorous discipline is needed throughout the software

development process. It is essential to keep careful records not only of the tests that have been performed, but also

of all changes that have been made to the source code of this or any other unit in the software. Use of a version

control system is essential. If a later version of the unit fails a particular test that it had previously passed, the

version-control software can provide a list of the source code changes (if any) that have been applied to the unit

since that time.

It is also essential to implement a sustainable process for ensuring that test case failures are reviewed daily

and addressed immediately if such a process is not implemented and ingrained into the team's workflow, the

application will evolve out of sync with the unit test suite, increasing false positives and reducing the effectiveness

of the test suite.

325 | P a g e

Unit testing embedded system software presents a unique challenge: Since the software is being developed

on a different platform than the one it will eventually run on, you cannot readily run a test program in the actual

deployment environment, as is possible with desktop programs.
[7]

Functional testing

Functional testing is a quality assurance (QA) process and a type of black box testing that bases its test

cases on the specifications of the software component under test. Functions are tested by feeding them input and

examining the output, and internal program structure is rarely considered (not like in white-box testing). Functional

Testing usually describes what the system does.

Functional testing differs from system testing in that functional testing "verifies a program by checking it against ...

design document(s) or specification(s)", while system testing "validate a program by checking it against the

published user or system requirements" (Kane, Falk, Nguyen 1999, p. 52).

Functional testing typically involves five steps .The identification of functions that the software is expected to

perform

1. The creation of input data based on the function's specifications

2. The determination of output based on the function's specifications

3. The execution of the test case

4. The comparison of actual and expected outputs.

Performance testing

 In software engineering, performance testing is in general testing performed to determine how

a system performs in terms of responsiveness and stability under a particular workload. It can also serve

to investigate, measure, validate or verify other quality attributes of the system, such

as scalability, reliability and resource usage.

Performance testing is a subset of performance engineering, an emerging computer

science practice which strives to build performance into the implementation, design and architecture of a

system.

Load testing

Load testing is the simplest form of performance testing. A load test is usually conducted to

understand the behaviour of the system under a specific expected load. This load can be the expected

concurrent number of users on the application performing a specific number of transactions within the set

http://en.wikipedia.org/wiki/Unit_testing#cite_note-7

326 | P a g e

duration. This test will give out the response times of all the important business critical transactions. If

the database, application server, etc. are also monitored, then this simple test can itself point

towards bottlenecks in the application software.

Stress testing

Stress testing is normally used to understand the upper limits of capacity within the system. This kind of

test is done to determine the system's robustness in terms of extreme load and helps application administrators to

determine if the system will perform sufficiently if the current load goes well above the expected maximum.

Soak testing

Soak testing, also known as endurance testing, is usually done to determine if the system can sustain the

continuous expected load. During soak tests, memory utilization is monitored to detect potential leaks. Also

important, but often overlooked is performance degradation. That is, to ensure that the throughput and/or response

times after some long period of sustained activity are as good as or better than at the beginning of the test. It

essentially involves applying a significant load to a system for an extended, significant period of time. The goal is to

discover how the system behaves under sustained use.

Spike testing

Spike testing is done by suddenly increasing the number of or load generated by, users by a very large

amount and observing the behaviour of the system. The goal is to determine whether performance will suffer, the

system will fail, or it will be able to handle dramatic changes in load.

Configuration testing

Rather than testing for performance from the perspective of load, tests are created to determine the effects

of configuration changes to the system's components on the system's performance and behaviour. A common

example would be experimenting with different methods of load-balancing.

Isolation testing

Isolation testing is not unique to performance testing but involves repeating a test execution that resulted in

a system problem. Often used to isolate and confirm the fault domain.

Integration testing

Integration testing (sometimes called integration and testing, abbreviated I&T) is the phase in software testing in

which individual software modules are combined and tested as a group. It occurs after unit testing and

before validation testing. Integration testing takes as its input modules that have been unit tested, groups them in

327 | P a g e

larger aggregates, applies tests defined in an integration test plan to those aggregates, and delivers as its output the

integrated system ready for system testing.

Purpose

The purpose of integration testing is to verify functional, performance, and reliability requirements placed

on major design items. These "design items", i.e. assemblages (or groups of units), are exercised through their

interfaces using black box testing, success and error cases being simulated via appropriate parameter and data

inputs. Simulated usage of shared data areas and inter-process communication is tested and

individual subsystems are exercised through their input interface.

Test cases are constructed to test whether all the components within assemblages interact correctly, for

example across procedure calls or process activations, and this is done after testing individual modules, i.e. unit

testing. The overall idea is a "building block" approach, in which verified assemblages are added to a verified base

which is then used to support the integration testing of further assemblages.

Some different types of integration testing are big bang, top-down, and bottom-up. Other Integration

Patterns are: Collaboration Integration, Backbone Integration, Layer Integration, Client/Server Integration,

Distributed Services Integration and High-frequency Integration.

CONCLUSION

 The newly proposed system is complete system to securely outsource log records to a cloud provider. In

this work, find out the challenges for a secure cloud based log management service. The attackers use below three

steps to hack. First, the attacker can intercept any message sent over the Internet. Second, the attacker can

synthesize, replicate, and replay messages in his possession and the attacker can be a legitimate participant of the

network or can try to impersonate legitimate hosts. It implement how to store secure log file in cloud and that file we

can change read, write, delete, upload and download. It can implement AES algorithm that uses for log monitor and

log generator .One of the unique challenges is the problem of log privacy that arises when we outsourced log

management to the cloud. Log information in this case should not be casually linkable or traceable to their sources

during storage, retrieval and deletion. It provided anonymous upload, retrieve and delete protocols on log records in

the cloud using the Tor network. The protocols that it developed for this purpose have potential for usage in many

different areas including anonymous publish-subscribe.

FUTURE ENHANCEMENT

 The basic idea of secure De-duplication services can be implemented given additional security features

insider attacker on De-duplication and outsider attacker by using the detection of masquerade activity which means

unknown person stolen and damage the data. So we confusion of the attacker and the additional costs incurred to

328 | P a g e

distinguish real from fake information added, and the deterrence effect which, although hard to measure, plays a

significant role in preventing from the attackers, that will harmful for our data

.

REFERENCE:

1) Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song,Provable data possession at

untrusted stores,” in Proc. of the 14th ACM conference on Computer and communications security (CCS’07),

Alexandria, Virginia, USA, 2007, pp. 598–609.

 [2] G. Ateniese, R. Di Pietro, L.V. Mancini and G. Tsudik, “Scalable and efficient provable data possession,” in

Proc. of the 4th international conference on Security and privacy in communication netowrks

(SecureComm’08), Istanbul, Turkey, 2008, pp. 1–10.

[3] D. Boneh, B. Lynn and H. Shacham, “Short signatures from the Weil pairing,” Journal of Cryptology, vol. 17,

no. 4, pp. 297–319, Sept. 2004.

[4] Y. Dodis, S. Vadhan and D. Wichs, “Proofs of retrievability via hardness amplification,” in Proc. of the 6th

Theory of Cryptography Conference on Theory of Cryptography (TCC’09), San Francisco, CA, USA, 2009,

pp. 109–127.

 [5] M. Dworkin, “Recommendation for block cipher modes of operation. methods and techniques,” NIST, USA,

No. NIST-SP-800-38A., 2001.

[6] A. Juels and B.S. Kaliski Jr, “Pors: proofs of retrievability for large files,”in Proc. of the 14th ACM

conference on Computer and communicationssecurity (CCS’07), Alexandria, Virginia, USA, 2007, pp. 584–

597.

[7] S. Keelveedhi and M. Bellare and T. Ristenpart, “DupLESS: server-aided encryption for deduplicated

storage,” in Proc. of the 22nd USENIXSecurity Symposium (USENIX Security 13), Washington, D.C.

USA,2013, pp. 179–194.

[8] J. Li, J. Li, D. Xie and Z. Cai, “Secure auditing and deduplicating data incloud,” IEEE Transactions on

Computers, vol. 65, no. 8, pp. 2386–2396,Aug. 2016.

[9] X. Liu, W. Sun, H. Quan, W. Lou, Y. Zhang and H. Li, “Publicly verifiableinner product evaluation over

outsourced data streams under multiplekeys,” IEEE Transactions on Services Computing, vol. 10, no. 5, pp.

826-838, Sept.-Oct. 2017.

[10] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc. Ofthe 14th International Conference

on the Theory and Application of Cryptology and Information Security, Advances in Cryptology –

ASIACRYPT2008, Melbourne, Australia, 2008, pp. 90–107.

[11] Q. Wang, C. Wang, K. Ren, W. Lou and J. Li, “Enabling public auditabilityand data dynamics for storage

security in cloud computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 5, pp. 847–

859,Dec. 2011.

329 | P a g e

[12] T. Y. Youn, K. Y. Chang, K. R. Rhee and S. U. Shin, “Public Auditand Secure Deduplication in Cloud Storage

using BLS signature,” Research Briefs on Informaiton& Communication Technology Evolution(ReBICTE),

vol. 3, article no. 14, pp. 1-10, Nov. 2017.

[13] J. Yuan and S. Yu, “Proofs of retrievability with public verifiability andconstant communication cost in

cloud,” in Proc. of the 2013 internationalworkshop on Security in cloud computing, Hangzhou, China, 2013,

pp.19–26.

[14] J. Yuan and S. Yu, “Secure and constant cost public cloud storage auditingwith deduplication,” in

Communications and Network Security (CNS),2013 IEEE Conference on, National Harbor, MD, USA, 2013,

pp. 145-153.

