International Journal of Advanced Technology in Engineering and Science Vol. No.7, Issue No. 03, March 2019 www.ijates.com ISSN 2348 - 7550

Medical Hub-Heart Disease Prediction System

S.Mahes Kumar¹, S.Obuli Prasanth², N.Rajendran³, S.Vijai⁴, Dr.M.Sakthivel⁵., ME.Ph.D,

^{1,2,3,4,5}Department of Computer Science and Engineering, Sengunthar Engineering College, Namakkal

ABSTRACT

The healthcare industry collects huge amounts ofhealthcare data which, unfortunately, are not "mined" to discover hidden information for effective decision making. Discovery of hidden patterns and relationships often goes unexploited. Advanced datamining techniques can help remedy this situation. This research has developed a prototype Intelligent Heart Disease Prediction System (IHDPS) using data mining techniques, namely, Decision Trees, Naïve Bayes and Neural Network. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. IHDPS can answer complex "what if" queries which traditional decision support systems cannot. Using medical profiles such as age, sex, blood pressure and blood sugar it can predict the likelihood of patients getting a heart disease. It enables significant knowledge, e.g. patterns, relationships between medical factors related to heart disease, to be established. IHDPS is Web-based, user-friendly, scalable, reliable and expandable. It is implemented on the .NET platform.

1. Motivation

A major challenge facing healthcare organizations(hospitals, medical centers) is the provision of qualityservices at affordable costs. Quality service impliesdiagnosing patients correctly and administeringtreatments that are effective. Poor clinical decisionscan lead to disastrous consequences which aretherefore unacceptable. Hospitals must also minimize the cost of clinical tests. They can achieve these results by employing appropriate computerbased information and/or decision support systems. Most hospitals today employ some sort of hospitalinformation systems to manage their healthcare or patient data. These systems typically generate huge amounts of data which take the form of numbers, text, charts and images. Unfortunately, these data are rarely used to support clinical decision making. There is a wealth of hidden information in these data that I largely untapped. This raises an important question: "How can we turn data into useful information that can enable healthcare practitioners to make intelligent clinical decisions?" This is the main motivation for this research.

2. Problem statement

Many hospital information systems are designed tosupport patient billing, inventory management andgeneration of simple statistics. Some hospitals usedecision support systems, but they are largely limited. They can answer simple queries like "What is thE average age of patients who have heart disease?", "How many surgeries had resulted in hospital stayslonger than 10 days?", "Identify the female patientswho are single, above 30 years old, and who have been treated for cancer." However, they cannot answer complex queries like "Identify the important preoperative predictors that increase the length of hospital stay", "Given patient records on cancer, should treatment include chemotherapy alone radiation alone, or both chemotherapy and radiation?", and "Given patient records, predict the probability of patients getting a heart disease."Clinical decisions are often made based on doctors'intuition and experience rather than on the knowledge rich data hidden in the database.

International Journal of Advanced Technology in Engineering and Science Vol. No.7, Issue No. 03, March 2019 www.ijates.com

This practice leads to unwanted biases, errors and excessive medical costs which affects the quality of service provided topatients. Wu, et al proposed that integration of clinical decision support with computer-based patient records could reduce medical errors, enhance patient safety, decrease unwanted practice variation, and improve patient outcome. This suggestion is promising as data modelling and analysis tools, e.g., data mining, have the potential to generate a knowledge-rich environment which can help to significantly improve the quality of clinical decisions.978-1-4244-1968-5/08/\$25.00 ©2008 IEEE 108

3. Research objectives

The main objective of this research is to develop aprototype Intelligent Heart Disease Prediction System

(IHDPS) using three data mining modeling techniques, namely, Decision Trees, Naïve Bayes and Neural Network. IHDPS can discover and extract hidden knowledge (patterns and relationships) associated with heart disease from a historical heart disease database. It can answer complex queries for diagnosing heart disease and thus assist healthcare practitioners to make intelligent clinical decisions which traditional decision support systems cannot. By providing effective treatments, it also helps to reduce treatment costs. Toenhance visualization and ease of interpretation, itdisplays the results both in tabular and graphical forms.

4. Data mining review

Although data mining has been around for morethan two decades, its potential is only being realizednow. Data mining combines statistical analysis, machine learning and database technology to extracthidden patterns and relationships from large databases. Fayyad defines data mining as "a process of nontrivial extraction of implicit, previously unknown and potentially useful information from the data stored in a database". Giudici defines it as "a process of selection, exploration and modelling of large quantities of data to discover regularities or relations that are at first unknown with the aim of obtaining clear and useful results for the owner of database" Data mining uses two strategies: supervised and unsupervised learning. In supervised learning, a training set is used to learn model parameters whereas in unsupervised learning no training set is used (e.g., kmeans clustering is unsupervised) Each data mining technique serves a different purpose depending on the modelling objective. The two most common modelling objectives are classification and prediction. Classification models predict categorical labels (discrete, unordered) while prediction models predict continuous-valued functions Decision Trees and Neural Networks useclassificationalgorithmswhile Regression, Association Rules and Clustering use prediction algorithms Decision Tree algorithms include CART(Classification and Regression Tree), ID3 (Iterative Dichotomized 3) and C4.5. These algorithms differ in selection of splits, when to stop a node from splitting, and assignment of class to a non-split node CART uses Gini index to measure the impurity of a partition or set of training tuples [6]. It can handle high dimensional categorical data. Decision Trees can also handle continuous data (as in regression) but they must be converted to categorical data. Naive Bayes or Bayes' Rule is the basis for many machine-learning and data mining methods. The rule (algorithm) is used to create models withpredictive capabilities. It provides new ways of exploring and understanding data. It learns from the "evidence" by calculating the correlation between thetarget (i.e., dependent) and other (i.e., independent)variables. Neural Networks consists of three layers: input, hidden and output units (variables). Connection between input units and hidden and output units are based on relevance of the assigned value (weight) of that particular input unit. The higher the weight the more important it is. Neural Network algorithms

International Journal of Advanced Technology in Engineering and Science Vol. No.7, Issue No. 03, March 2019 www.ijates.com ISSN 2348 - 7550

use Linear and Sigmoid transfer functions. Neural Networks are suitable for training large amounts of data with few inputs. It is used when other techniques are unsatisfactory.

5. Methodology

IHDPS uses the CRISP-DM methodology to build mining models. It consists of six major phases: business understanding, data understanding, datapreparation, modeling, evaluation, and deployment. Business understanding phase focuses on

understanding the objectives and requirements from a

business perspective, converting this knowledge into a data mining problem definition, and designing apreliminary plan to achieve the objectives. Dataunderstanding phase uses the raw the data andproceeds to understand the data, identify its quality,gain preliminary insights, and detect interesting subsets to form hypotheses for hidden information. Data preparation phase constructs the final dataset that will be fed into the modeling tools. This includes table, record, and attribute selection as well as data cleaning and transformation. The modeling phase selects and applies various techniques, and calibrates their parameters to optimal values. The evaluation phase evaluates the model to ensure that it achieves the business objectives. The deployment phase specifies the tasks that are needed to use the models Data Mining Extension (DMX), a SQL-style querylanguage for data mining, is used for building andaccessing the models' contents. Tabular and graphical visualizations are incorporated to enhance analysis and interpretation of results.

5.1. Data source

A total of 909 records with 15 medical attributes(factors) were obtained from the Cleveland HeartDisease database [1]. Figure 1 lists the attributes. Therecords were split equally into two datasets: trainingdataset (455 records) and testing dataset (454 records). To avoid bias, the records for each set were selected randomly. For the sake of consistency, only categorical attributes were used for all the three models. All the non-categorical medical attributes were transformed to categorical data. The attribute "Diagnosis" was identified as thepredictable attribute with value "1" for patients withheart disease and value "0" for patients with no heartdisease. The attribute "PatientID" was used as the key; the rest are input attributes. It is assumed that problems such as missing data, inconsistent data, and duplicate data have all been resolved.

International Journal of Advanced Technology in Engineering and Science -

Vol. No.7, Issue No. 03, March 2019

www.ijates.com

Predictable attribute

1. Diagnosis (value 0: < 50% diameter narrowing (no heart disease); value 1: > 50% diameter narrowing (has heart disease)) Key attribute 1. PatientID - Patient's identification number **Input attributes** 1. Sex (value 1: Male; value 0 : Female) 2. Chest Pain Type (value 1: typical type 1 angina, value 2: typical type angina, value 3: non-angina pain; value 4: asymptomatic) 3. Fasting Blood Sugar (value 1: > 120 mg/dl; value 0: < 120 mg/dl) 4. Restecg – resting electrographic results (value 0: normal; value 1: 1 having ST-T wave abnormality; value 2: showing probable or definite left ventricular hypertrophy) 5. Exang - exercise induced angina (value 1: yes; value 0: no) 6. Slope – the slope of the peak exercise ST segment (value 1: unsloping; value 2: flat; value 3: downsloping) 7. CA - number of major vessels colored by floursopy

```
(value 0 – 3).
```

5.2. Mining models

Data Mining Extension (DMX) query language wasused for model creation, model training, modelprediction and model content access. All parameterswere set to the default setting except for parameters "Minimum Support = 1" for Decision Tree and "Minimum Dependency Probability = 0.005" for Naïve Bayes [10]. The trained models were evaluated against the test datasets for accuracy and effectiveness before they were deployed in IHDPS. The models were validated using Lift Chart and Classification Matrix.

5.3. Validating model effectiveness

The effectiveness of models was tested using twomethods: Lift Chart and Classification Matrix. Thepurpose was to determine which model gave the highest percentage of correct predictions fordiagnosing patients with a heart disease. *Lift Chart with predictable value*. To determine if there was sufficient information to learn patterns inresponse to the predictable attribute, columns in the trained model were mapped to columns in the testdataset. The model, predictable column to chartagainst, and the state of the column to predict patients with heart disease (predict value = 1) were alsoselected. Figure 2 shows the Lift Chart output. The Xaxis shows the percentage of the test dataset used to compare predictions while the Y-axis shows the percentage of values predicted to the specified state. The blue and green lines show the results for randomguess and ideal model respectively. The

International Journal of Advanced Technology in Engineering and Science Vol. No.7, Issue No. 03, March 2019 www.ijates.com

purple, yellow and red lines show the results of Neural Network, Naïve Bayes and Decision Tree models respectively. The top green line shows the ideal model; it captured 100% of the target population for patients with heart disease using 46% of the test dataset. The bottom blue line shows the random line which is always a 45-degree line across the chart. It shows thatif we randomly guess the result for each case, 50% of the target population would be captured using 50% of the test dataset. All three model lines (purple, yellowand red) fall between the random-guess and idealmodel lines, showing that all three have sufficientinformation to learn patterns in response to the predictable state.

Lift Chart with no predictable value. The steps for producing Lift Chart are similar to the above except that the state of the predictable column is left blank. It does not include a line for the random-guess model. It tells how well each model fared at predicting the correct number of the predictable attribute. Figure 3 shows the Lift Chart output. The X-axis shows the percentage of test dataset used to compare predictions while the Y-axis shows the percentage of predictions that are correct. The blue, purple, green and red lines show the ideal, Neural Network, Naïve Bayes and Decision Trees models respectively. The chart shows the performance of the models across all possible states. The model ideal line (blue) is at 45-degree angle, showing that if 50% of the test dataset is processed, 50% of test dataset is predicted correctly. The chart shows that if 50% of the population is processed, Neural Network gives the highest percentage of correct predictions (49.34%) followed by Naïve Bayes (47.58%) and Decision Trees (41.85%). If the entire population is processed, Naïve Bayes model appears to perform better than the other two as it gives the highest number of correct predictions (86.12%) followed by Neural Network (85.68%) and Decision Trees (80.4%). Processing less than 50% of the population causes the Lift lines for Neural Network and Naïve Bayes to be always higher than that for Decision Trees, indicating that Neural Network and Naïve Bayes are better at making high percentage of correct predictions than Decision Trees. Along the X-axis the Lift lines forNeural Network and Naïve Bayes overlap, indicating that both models are equally good for predicting correctly. When more than 50% of population is processed, Neural Network and Naïve Bayes appear to perform better as they give high percentage of correct predictions than Decision Trees. This is because the Lift line for Decision Trees is always below that of Neural Network and Naïve Bayes. For some population range, Neural Network appears to fare better than Naives Bayes and vice-versa.

Classification Matrix. Classification Matrixdisplays the frequency of correct and incorrect predictions. It compares the actual values in the test dataset with the predicted values in the trained model. In this example, the test dataset contained 208 patients with heart disease and 246 patients without heart disease. Figure 4 shows the results of the ClassificationMatrix for all the three models. The rows represent predicted values while the columns represent actualvalues (1 for patients with heart disease, Figure 5 summarizes the results of all three models. Naïve Bayes appears to be most effective as it has thehighest percentage of correct predictions (86.53%) forpatients with heart disease, followed by NeuralNetwork (with a difference of less than 1%) andDecision Trees. Decision Trees, however, appears tobe most effective for predicting patients with no heart disease (89%) compared to the other two models.

International Journal of Advanced Technology in Engineering and Science vol. No.7, Issue No. 03, March 2019 ijates www.ijates.com ISSN 2348 - 7550

5.4. Evaluation of Mining Goals

Five mining goals were defined based onexploration of the heart disease dataset and objectives of this research. They were evaluated against thetrained models. Results show that all three models had achieved the stated goals, suggesting that they could be used to provide decision support to doctors for diagnosing patients and discovering medical factors associated with heart disease. The goals are as follows: *Goal 1: Given patients' medical profiles, predicthose who are likely to be diagnosed with heart disease*. All three models were able to answer thisquestion using singleton query and batch or predictionjoin query. Both queries could predict on single input cases respectively. IHDPSsupports prediction using "what if" scenarios. Usersenter values of medical attributes to diagnose patients with heart disease. For example, entering values Age =70, CA = 2, Chest Pain Type = 4, Sex = M, Slope = 2and Thal = 3 into the models, would produce theoutput in Figure 6. All three models showed that thispatient has a heart disease. Naïve Bayes gives thehighest probability (95%) with 432 supporting cases,followed closely by Decision Tree (94.93%) with 106supporting cases and Neural Network (93.54%) with

298 supporting cases. As these values are high, doctorscould recommend that the patient should undergofurther heart examination. Thus performing "what if"scenarios can help prevent a potential heart attack.

Goal 2: Identify the significant influences andrelationships in the medical inputs associated with thepredictable state – heart disease. The Dependencyviewer in Decision Trees and Naïve Bayes models models the results from the most significant to the least significant (weakest) medical predictors. The viewer is especially useful when there are many predictable attributes. Figures 7 and 8 show that in both models, the most significant factor influencing heart disease is

"Chest Pain Type". Other significant factors includeThal, CA and Exang. Decision Trees model shows 'Trest Blood Pressure" as the weakest factor whileNaïve Bayes model shows 'Fasting Blood Sugar' as the weakest factor. Naïve Bayes appears to fare betterthan Decision Trees as it shows the significance of allinput attributes. Doctors can use this information tofurther analyze the strengths and weaknesses of themedical attributes associated with heart disease.(99.61%) that patients with heart disease are found in the relationship between the attributes (nodes): "Chest

Pain Type = 4 and CA = 0 and Exang = 0 and Trest

Blood Pressure ≥ 146.362 and < 158.036." Doctorscan use this information to perform medical screeningon these four attributes instead of on all attributes onpatients who are likely to be diagnosed with heartdisease. This will reduce medical expenses, administrative costs, and diagnosis time. Informationon least impact (5.88%) is found in the relationshipbetween the attributes: "Chest Pain Type not = 4 and

Sex = F". Also given is the relationship between attributes for patients with no heart disease. Results how that the relationship between the attributes: "Chest Pain Type not = 4 and Sex = F" has the highestimpact (92.58%). The least impact (0.2%) is found in the attributes: "Chest Pain Type = 4 and CA = 0 and

Exang = 0 and Trest Blood Pressure \geq 146.362 and <

158.036". Additional information such as identifyingpatients' medical profiles based selected nodes can alsobe obtained by using the drill through function.Doctors can use the Decision Tree viewer to perform*Goal 4:*

International Journal of Advanced Technology in Engineering and Science Vol. No.7, Issue No. 03, March 2019 www.ijates.com

Identify characteristics of patients withheart disease. Only Naïve Bayes model identifies the characteristics of patients with heart disease.

Fig: Decision Trees Viewer

CONCLUSION

We conclude our website is more suitable for any multispecialty hospitals. Fast and efficient way to reach the hospitals and doctors activeness. Ensuring patient details to the corresponding hospital management administrators.

REFERENCES

- [1] "Beginning PHP and MySQL From Novice to Professional" by W Jason Gilmore
- [2] "PHP: A Beginner's Guide" by Vikram Vaswani
- [3] "Learning PHP 5" by David Sklar "PHP Object Oriented Solutions" by David Powers
- [4] "Build Your Own Database Driven Web Site Using PHP & MySQL" by Kevin Yank
- [5] "PHP Programming For Beginners: The Simple Guide to Learning PHP Fast!" by Tim Warren.
- [6] "Modern PHP: New Features and Good Practices" by Josh Lockhart
- [7] "PHP: Learn PHP in 24 Hours or Less A Beginner's Guide To Learning PHP Programming Now" by Robert Dwight