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 ABSTRACT 

Higher order squeezing in stimulated modein seven-wave mixing optical processeshas been studied.It is found to 

be dependent on coupling constant “g” and phase values of the field amplitude with photon number of the 

fundamental as well as harmonic mode under short time approximation. 

 

Keywords:Higher order squeezing,Nonclassicality, Multiwave mixing. 

 

1. INTRODUCTION 

Squeezed states of electromagnetic field correspond to a non-classical state [1, 2] in which reduction of quantum 

fluctuation below the coherent state level takes place.A large number of methods have been proposed in 

literature to generate and detect squeezed states theoretically and experimentally [3-10]. Due to low noise 

property of squeezed states potential applications of squeezed light have been reported in recent past in the 

processing of quantum information, for example, for quantum teleportation [11-13], quantum cryptography [14] 

and quantum information networking [15]. 

In the present work, we have reported the generation of higher order squeezing state in stimulated mode in 

seven-wave mixing optical process. 

 

2. HIGHER ORDER SQUEEZING 

Higher order squeezing is defined in various ways. Hong and Mandel [16, 17] and Hillery [1] have introduced 

the notion of higher order squeezing of quantized electromagnetic field as generalization of normal 

squeezing.Amplitude-cubed squeezing is defined in terms of operators 1Z and 2Z  as 

      3 †3 3 †3

1 2

1
   and  Z

2 2

i
Z A A A A

(1) 

Where 1Z  and 2Z are the real and imaginary parts of the cube of field amplitude, respectively. A and
†A are 

slowly varying operators defined by  i tA ae  and
† † i tA a e  . 

The operators 1Z  and 2Z  obey the commutation relation 
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     
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This leads to the uncertainty relation
 

     2

1 2
1 / 4 9 9 6

A A
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(3)
 

where AN is the usual number operator. 

Amplitude-cubed squeezing is said to exist in 1Z variable if 

   2 2

1
( ) 1 / 4 9 9 6  

A A
Z N N

(4) 

Or the squeezing f  is
 

    2 2

1
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A A
f Z N N

(5) 

3. SEVEN-WAVEMIXINGPROCESS 

A multiwave mixing process can be viewed in the optics as a process involving multi photon interaction. In this 

process, the interaction is looked upon as a process which involves the absorption of two pump photons, each 

having frequency ω1 and emission of two probe photons of frequency ω2, and  signal photons of frequency ω3 

where 

2ω1 = 2ω2 +ω3 

The Hamiltonian for this process is given as follows (ћ=1) 

       † † † 2 †2 †3 †2 2 3

1 2 3
H a a b b c c g a b c a b c

(6)
 

in which g is a coupling constant.  A = aexp (iω1t), B  = b exp (iω2t) and C  = c exp (iω3t) are the slowly 

varying operators at frequencies ω1, ω2 and ω3, a (a
†
), b (b

†
) and c (c

†
) are the usual annihilation (creation) 

operators, respectively. The Heisenberg equation of motion for fundamental mode A  is given as 


    

,
dA A

i H A
dt t

 (7) 

By using the short-time approximation technique, we expand ( )A t  by using Taylor’s series expansion and 

retaining the terms up to g
2
t
2
 as 

        
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† 2 3 2 2 2 3 † 2 2 2 † 2 2 † 2 2 † 2 3
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Where 
†

AN A A , 
†

BN B B  and 
†

CN C C .
 

Using Equations (8) number of photons in mode A  may be expressed as 



 
 

179 | P a g e  
 

     
 



   

†

1

† 2 2 †2 2 †2 2 †12 4 2

A
N t A t A t

A A g t A A B B B B

(9)
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3.1 STIMULATED THIRD ORDER AMPLITUDE SQUEEZING 

The real quadrature component for third order squeezing in fundamental mode isdefined 

as        
 

3 †3

1

1

2A
Y t A t A t  

Initially, we consider the quantum state of the field amplitude as a product of coherent state for the 

fundamental mode A  and harmonic mode for B and vacuum state for mode C i.e. 

   0
A B C

  (11) 

Using Equations (8) and (11) the third-order amplitude of the fundamental mode is expressed 

as
    3 3 2 2 † 4 3 †2 2 †6 3 3 4 2A t A g t A A A B B B B    

  (12)                             
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  (13) 

Using Equations (11) and (13), we get the expectation values as 

         
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and 
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Therefore 
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Using Equations (9), (10) and (16) a straightforward but strenuous calculation yields 

     
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   (17) 

The right hand side of Equation (17) is negative, indicating that squeezing occurs in cube of field 

amplitude in the fundamental mode in seven wave mixing. 

4. RESULT 

The results show the presence of squeezing in third order of field amplitude in seven wave mixing in stimulated 

mode.Taking 
2 410gt  and 0  for maximum squeezing, the variations of  YS  is shown in Figure 1. 

Degree of squeezing is shown as a function of
2

 . It is clear from Figure 1 that squeezing increase nonlinearly 

with
2

 and 
2

. Thus we can conclude that the degree of squeezing directly depends upon the photon 

number of the fundamental mode as well as on the harmonic mode. 

 

Figure.1. Dependence of stimulated third order amplitudesqueezing in 7wmxon 
2

 . 
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5. CONCLUSION

 
It is shown that the selective phase values of field amplitude of fundamental mode lead to higher order 

squeezing up to third order in seven-wave mixing process.Again, from Equation (17) we can conclude that the 

degree of higher order squeezing present in the system can be tuned by varying the values of initial phase of the 

coherent state ( ), number of photons present in the radiation field prior to the interaction (
2

 ) and the 

interaction time (t). 
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