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ABSTRACT 

In this paper, we study the optimal operation of a single removable and non-reliable server in a Markovian 

queuing system under steady-state conditions. The system is in idle state before the arrival of customer and after 

the arrival of customer it is in working state, it may breakdown and systems goes to vacation during that period. 

Here, there is bulk arrival of customer and bulk service provided to them.  
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I INTRODUCTION 

Assumptions:  

(i) The arrival of customer are    according to Poisson process with parameter. 

(ii) Service time of customer is exponentially distributed  with parameter 1/µ. 

iii) As long as the server on, it will serve the customer                                          

(iv) When it is working, it is assumed that breakdown can  happen at any time, with   Poisson rate 1. 

(v) Whenever breakdown occurs it is repaired Immediately with repair rate 2 where repair rate are assumed to 

be exponentially distributed. 

(vi) The server goes on vacation when there is nocustomer in the server and come back only when N Customer 

in the queue. 

 (vi) The server goes on vacation when there is no customer in the server and come back only when N customer 

in the queue. 

Steady – State Result 

Notations: - Let us suppose  

i = 0, Represents the server is in idle state. 

i = 1, Represents the server is on and in working condition. 

i = 2 Represents the server is turned on  and found to be broken. 

p0(r)  the steady state probability that there are r customers in the system and the 

customer  is  not  in  service  when  the  server  is  turned  off where r = 0, 

1, …….... N1.  
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p1(r) the steady state Probability that there are r customers in the system when server is 

on and in working condition r = 1, 2…… 

p2(r) The steady state probability that there are r customers in the system when server 

is turned 

on but found to be broken down r = 1, 2... 

 

The steady state equation for p0(r), p1(r), p2(r) 

P0(0) = P1(1)                              …(1) 
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Solving (1) – (7) recursively, we obtain analytic solution Pi(n)      ( i = 0,1,2) as follows   
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Using equations (1) - (7) 
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Let P(z) denote the generating function of the number of customers in the system, thus  

 P(z) = P0(z) + P1(z) + P2(z)  
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We can obtain P0(0) with the use of normalizing conditions P(z) = 1 i.e.  
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Computation for PID, PBS, PBD 

In steady state,  

PID  : probability that server is idle.  

PBS  : probability that server is busy.  

PBD : probability that server is breakdown  

Let us suppose we have following expressions for PID, PBS, and PBD 
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It is clear from equation (2) that  
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If equations (1)  (6) added term by term  
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we prove that N-policy Markovian queuing system with a non-reliable server, the probability that the server is 

busy in steady state is equal to the traffic intensity. It is important to note that Heyman [4] has shown that the 

fraction of time server is busy for N-policy M/G/1 queuing system with reliable server is traffic intensity too. 
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Special Cases  

Case I :- If we take  = 0,  = 0, then the results for the N-policy M/M/1 queuing system with reliable server 

case are obtained. Expression for equation (13) for P (z) then corresponds to the existing result in the literature.  

Case II: - If p we put  = 0 and N = 1 then result for ordinary M/M/1 queueing system with reliable server are 

obtained. Expression equation (13) for P 0(0) then corresponds to the existing result in the literature.  

 

System Characteristics  

 In steady-state, the following notations are used:  

LIL           The expected number of customers in the system when the server is turned off;  

LID The expected number of customers in the system when the server is turned on 

and is in operation;  

LBD The expected number of customers in the system when the server is turned on but 

found to be broken down; 

LS The expected number of customers in the system 

The expressions for LIL, LID, LBD and LS 
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we have,  

 LS = LIL + LID + LBD 

To determine an expression for LIL, we compute P0(z), 
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similarly LID, LBD, LS can be obtained by equations (9), (10), (11), we will compute first P1(z), P2(z) and P(z) 

then by applying L-Hospital rule twice, we will obtained.  
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Note that the expected number of customers in the system for the ordinary M/M/1 queuing system with non-

reliable server is obtained by setting N = 1 in (23).   

 

Optimal N. Policy: - Let us defined the following  

 When the server is turned off, then the length of time which is called Idle period is denoted by IL. Then the 

expected length is denoted by E[IL] 

 Busy period to type I denoted by BS1, which is length of time per cycle when server is turned on and in 

operation and type 1 customers are being served. The expected length of busy period type-I is E[BS1] 

 Busy period of type II denoted by BS2 , which is the length of time per cycle when the server is turned on 

and in operation and type II customers are being served. Then expected length of busy period type-II is E[BS2] 

 Breakdown period denoted by BO which is the length of time per cycle when the server is turned on and 

found to be breakdown and customers are waiting to serve. Then expected length of breakdown is given by 

E[BD] 

 Busy cycle denoted by BC, this is the length of time from the beginning of the last idle period to the 

beginning of the next idle period. Then expected length of busy cycle is given by E[BC]. 

We know since busy cycle is the sum of the idle period, the busy period of type-I, the busy period of type-II and 

the breakdown therefore we obtain 

 E[BC] = E[IL] + E[BS1] + E[BS2] + E[BD] 

  = E[L] + E[BS] + E[BD] 

where  E[BS] = E[BS1] + E[BS2] 

using the memory less property for the exponential distribution, the length of the idle period is the sum of N 

exponential random variables each having mean 1/. Thus the expected length of the idle period is given by  

 E[L] = 


N

 

 

 

Determining the Optimal Policy  
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We construct a total expected cost function per unit time for the N-policy Markovian queueing system with non-

reliable server, in which N is a decision variable our objective is to determine the optimum value of the control 

parameter N, say N*; so as to minimize this function. Let  

Ch : be the holding cost per unit time per customer present in system  

C f :the cost incurred per unit time for keeping the server off 

C0 :the cost incurred per unit time for keeping the server on 

C b :the breakdown cost per unit item for failed server 

Cs :the start-up cost per unit time for turning the server on 

C d :the shut down cost per unit time for turning the server off. 

Using the definition of each cost element mentioned above, the total expected cost function per unit time is 

given by  

F(R) = C f E[RS] + C0 
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]CS[E

]BS[E
f + C b 

]CS[E

1
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                                                                    …(24)      

Since R is positive integer R = 1, 2,….., the optimal value of R, R*, to minimize F(R) is determined by 

satisfying inequality  

F(R*+1)>F(R*)< F(R*1)                                         …(25) 

       The inequality can be shown to reduces to  
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As an approximation, if N is treated as a continuous variable greater than zero, then the optimum value of R is 

obtained by differentiating F(R) with respect to R and setting the result equal to zero. The optimal value of N is 

approximately given by  

R*  

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h

ds
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)]()[CC(2
                                        …(27) 

It should be noted that if R* is not an integer, the best positive integers surrounding R*. It is be noted that the 

result equation (27) is more general that Heyman is result. 

 

Numerical Results and Conclusion  

The numerical results are obtained by considering the cost parameter as follows: 

The optimal value of R policy and its minimum expected cost F(R) for the above five cases are shown in Table-

I for (, ) = (2, 10) and for the variable values of (, ) 

The following conclusions can be drawn from the table that  

(i) F(R*) decreases as  or  decreases for any cases 

(ii) R* decreases in  for any case; 

(iii) The optimum value of R, R*, increases as Cs and C d increases for fixed value of R, Ck, C0, C f  and 

C b ; 
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(iv) The optimum value of R, R* decreases as Ck increases for fixed value of Cs, C0, C f, C d and C b. 

From the last three columns of table-I, R* does not change even though  varies from 0.1 to 0.3 for any case. 

Intuitively this seems too insensitive to changes in . 

 The optimal R policy and its minimum expected cost F(R) for five cases are shown in table-II for (, ) = (0.5, 

0.06) for different value of (, ). 

The results in table-II clearly show that 

 F(R*) increases as  or  decreases for any case. 

(i) The optimum value of R, R* increases in  for any case. 

(ii) The optimum value of R, R* increases as Cs and C d increases for fixed value of Ck, C0, Cp and C b; 

and  

(iii) The optimum value of N, N* decreases as Ch increases for fixed values of Cs, C0, C f, C d and C b. 

  From the last three columns of table-II, R* are the same even though.                      

 

Table –I 

 

     

φ Ls Ls Ls Ls 

1.6 0.66 0.34 17.66 48.33 

1.7 0.66 0.34 8.91 30.83 

1.8 0.66 0.34 5.99 24.99 

1.9 0.66 0.34 4.54 22.08 

2 0.66 0.34 3.66 20.33 

2.1 0.66 0.34 3.08 19.16 

2.2 0.66 0.34 2.66 18.33 

2.3 0.66 0.34 2.35 17.7 

2.4 0.66 0.34 2.11 17.22 

2.5 0.66 0.34 1.91 16.83 

2.6 0.66 0.34 1.75 16.51 

2.7 0.66 0.34 1.62 16.25 

2.8 0.66 0.34 1.51 16.02 

2.9 0.66 0.34 1.41 15.83 

 

 

 

 

 

Graph-I 
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 Table- II     

Values of expected Mean Queue length with respect to φ 

      

μ = 3 μ = 3 μ = 3 μ = 3   

λ = 9 λ = 11 λ = 13 λ = 15   

      

φ Ls Ls Ls Ls  

1.5 5.29 3.6 3.05 2.9  

1.6 3.79 2.78 2.41 2.3  

1.7 2.96 2.26 1.99 1.91  

1.8 2.43 1.9 1.7 1.64  

1.9 2.06 1.65 1.48 1.43  

2 1.79 1.45 1.31 1.27  

2.1 1.59 1.3 1.18 1.14  

2.2 1.43 1.17 1.07 1.04  

2.3 1.3 1.07 0.98 0.95  

2.4 1.19 0.99 0.9 0.88  

2.5 1.1 0.91 0.84 0.82  

2.6 1.02 0.85 0.78 0.76  

2.7 0.95 0.8 0.73 0.71  

2.8 0.89 0.75 0.69 0.67  

2.9 0.84 0.71 0.65 0.63  

3 0.8 0.67 0.62 0.6  
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 Graph-II 
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