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ABSTRACT 

 Free vibration analysis of orthotropic plate has been investigated with the help of dynamic stiffness method using 

classical plate theory. The rectangular plates have two opposite edges simply-supported, while all possible 

combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. 

Hamilton’s principle is used to derive the governing differential equations of motion and natural boundary 

conditions in free vibration.  The dynamic stiffness matrix is derived by relating the amplitudes of forces to those of 

the displacements at the plate ends. The Wittrick–Williams algorithm is used as the solution technique when 

applying the dynamic stiffness matrix to compute the natural frequencies and mode shapes. 

 

Keywords: Dynamic Stiffness Matrix, FEM, Free Vibration, Penalty Method, Wittrick-Williams 

Algorithm. 

 

I INTRODUCTION 

 

Aircraft structures are generally modelled as assemblies of thin-walled structural elements. In particular, the top and 

bottom skins, torsion box, ribs and webs of the wing are idealised as plates. Thus the free vibration analysis of such 

structures plays an important role in aircraft design. The analysis facilitates aeroelastic and response analyses. The 

purpose of this paper is to develop the dynamic stiffness method for an accurate and efficient free vibration analysis 

of an orthotropic plates and plate assemblies. 

FEM is an approximate method, but it generally converges to the exact solution with increasing number of elements. 

However, the accuracy of results cannot be always guaranteed. This is particularly true in dynamic analysis at high 

frequencies when the FEM may become unreliable. Thus, there is, and there will always be a need to use analytical 

methods based on classical theories, wherever possible, to validate the FEM which provide further insights and 

importantly, restore confidence in design. One such method is that of the dynamic stiffness method and (DSM) 

which gives exact results that are independent of the number of elements used in the analysis. For instance, one 
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single structural element can be used in the DSM to compute any number of natural frequencies to any desired 

accuracy, which of course, is impossible in the FEM. In DSM, once initial assumptions about the displacement field 

have been made, no inaccuracy occurs in the analysis.  

A strong point about DSM is that it has all the essential features of FEM such as coordinate transformation, offset 

connections, assembly procedure, etc., and yet it retains the exactness of results through the use of exact solution of 

the governing differential equation. However, the solution techniques for FEM and DSM are different. Unlike the 

conventional FEM which leads to a linear eigen value problem, the DSM leads to a non-linear eigen value problem 

which is generally solved by applying the Wittrick–Williams algorithm. 

The current investigation is carried out in following steps. First, the fundamental equation of the CPT for orthotropic 

plate is briefly summarized. Secondly, the dynamic stiffness matrix based on the CPT is formulated. Subsequent to 

this development, the assembly procedure and imposition of boundary conditions by suppressing appropriate 

degrees of freedom (penalty method) are explained in Section. This is followed by Section which highlights the 

application of the Wittrick–Williams (WW) algorithm for computation of natural frequencies of thick plates with 

various boundary conditions. Once the DS matrices using CPT has been derived, the results are computed for 

rectangular plates with two opposite sides simply supported and the others having any generic boundary conditions 

(BC) which can be in any combination of clamped (C), free (F), or simply supported (SS). Finally the paper closes 

with some concluding remarks. 

 

II MATHEMATICAL FORMULATION 

2.1. Geometrical configuration 

The paper deals with orthotropic rectangular plates defined by a thickness h, length L and width b. The plate has two 

opposite edges simply-supported along y axis (i.e. along the edges x = 0 and x = L), while the other two edges may 

be free, simply-supported, or clamped. The position of any point of the mid surface of the plate is described by two 

Cartesian coordinates x and y. The origin of the coordinate system is located at the center of the plate. The 

orthotropic axes of the material are parallel with axes x and y. 

 

Fig. 1.Rectangular plate 

2.2. Kirchhoff-Love assumptions 

1. Cross sections of the plate perpendicular to the middle plane prior to deformation remain plane and        

perpendicular to the deformed middle plane after the deformation shown in the fig.1 below. 

2. This implies that in-plane displacements are linear functions of curvature and the thickness coordinate.  

3. The thickness of the plate being assumed constant. 
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4. The normal strain in the direction perpendicular to the middle plane is equal to zero. 

 

Fig. 2.Deformations of plate in the xz-plane 

Following the Kirchhoff-Love assumption, displacements of an arbitrary point of the plate are 

 

 

where and are the rotational displacements about the x and y axes at the middle surface of the 

plate, respectively,  isthe transverse displacement and and are displacements of the middle plane or the 

displacements in the membrane mode. 

The main focus of this work is on the out of plane vibratory motion of the plate so that the displacements in the 

membrane mode (x, y) and (x, y) are excluded. Clearly the only unknown in the above expression is the vertical 

displacement . 

The strains in the middle plane can be obtained as linear functions of the displacements as: 

 

For orthotropic plate we have the constitutive relations which are obtained by considering the plane stress 

assumption. In the orthotropic axes (1, 2, and 3), these relations are given by the following equations: 

 

where  ,   are thecomponents of the Cauchy stress tensor and  , are the components of the small 

strain tensor. Material constants are given by the following equations: 
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whereE1, E2 are Young's moduli along the orthotropicdirections1and2, respectively, , are major and minor 

Poisson's ratios and is the shear modulus. 

The 3D plate problem is essentially reduced to a 2D problem by integrating the stresses along the thickness of the 

plate. The forces associated with out-of-plane displacements are as follows 

 

 

2.3 Stress Resultants 

 

Fig. 3.Stress and Moment Resultants 

Stress resultants due to normal stresses: 

 

Stress resultants due to transverse shear stresses: 

 

Moment resultants: 

 

The small strains, obtained from the displacement field Eq. (2), are introduced in the constitutive equations Eq. (3) 

to obtain stress/displacement relationships. Then, internal force displacement relationships are obtained from 
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internal force definitions. In the case of plates, for which the orientation of the constitutive material is such that 

orthotropic axes 1 and 2are equal to axes x and y, respectively, we obtain the following equations: 

 

 

2.4. Equations of motion  

By using the analysis of an Infinitesimal Plate Element the well-known equations of motion for plates is given as 

follows: 

 

Where ρ is the mass density of the material 

By introducing the constitutive Eq. (3) in Eq. (4), the following governing differential equation of an orthotropic 

plate in free vibration is obtained as: 

 

Where Dx, Dy and Dxy are flexural rigidities and which are given as: 

 

2.5. Boundary conditions 

Free edge boundary conditions are considered to solve the formulation of the dynamic problem. These boundary 

conditions describe external transverse forces and bending moments along the edges of the plate. This Boundary 

Conditions (BC) is given as: 

 

 

 

III DYNAMIC STIFFNESS DEVELOPMENT 

The first step in developing the DS matrix is to solve the governing differential Eq. (6). The solution is sought in the 

traditional Levi form. A levy type solution which satisfies the BCs is sought in the following form: 

 

Where   is the unknown frequency and   (m=1, 2 … ) 

By substituting Eq. (8) into Eq. (5), the following fourth order ordinary differential equations are obtained: 
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The solution of the above equation is obtained by using the differential equation method which gives the four roots. 

From these roots two solutions of the differential equation are possible: 

Case 1.if all roots are real ( ) 

 

 

The solution is: 

 

Case 2.if  

Two real and two imaginary roots ( ) 

 

The solution is: 

 

 

The procedure to obtain the DS matrix for the first case is given below. Same procedure is applied to obtain the DS 

matrix for second case. 

Now from the known displacement  (Eq. (15) and (13)), the rotation , the edge reactions or net shear force , 

and bending moment  can be expressed in the following form using Eq. (12). 

Rotation: 

 

 

Net shear force: 
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Let,  

 

Bending moment: 

 

 

Let,  

 

The boundary conditions for displacements are: 

 

 

similarly the BC for the forces is: 

 

 

 

Fig. 4.Boundary conditions for displacements and forces for a plate element. 

By applying these BCs for displacements, i.e. substituting Eq. (21) into Eqs. (15) and (17), we get the following 

equations: 

This can be written in the matrix relationship as: 

 

Where,  
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Subsequently, by applying the BCs for forces, i.e. substituting Eq. (22) into Eqs. (18) and (19), the following matrix 

relationship is obtained: 

 

 

Where,  

Using Eqs. (24) and (26) the dynamic stiffness matrix K for the plate element based on the CPT can be obtained by 

eliminating the constant vector C to give: 

 

Where,  

Thus we get dynamic stiffness matrix from Eq. (28) with six independent terms 

as which describe the effect on shear and moment due to unit displacements. Thus K 

can be expressed as: 

 

Explicit expressions of the elements are derived by extensive algebraic manipulation using Matlab. These are given 

in the Appendix. 

 

IV APPLICATION OF DSM 

4.1. Assembly procedure and application of boundary conditions 

The dynamic stiffness matrix given by Eqs... (29) is the key point to compute exact natural frequencies of levy type 

of plates which are simply supported on two opposite sides. We can determine the natural frequencies and mode 

shapes by using classical method for individual plates but, we cannot apply this method for plate assemblies. This 

can be done in the DSM approach. This is similar to the finite element method which is schematically shown in Fig. 

5.Here each element of plate is connected through nodal lines instead of single points. From this overall master 

stiffness matrix will be banded as in the case of FEM. 

Boundary conditions can be applied in the same way as we apply in the finite element method. The penalty method 

is generally used to apply the boundary conditions to suppress the particular degree of freedom. In this method, a 

large value of stiffness is added to the appropriate term on the leading diagonal of the dynamic stiffness matrix. The 

procedure for applying the boundary conditions is summarized as follows: 
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 Free (F): no penalty is applied. 

 Simply supported (SS):  is penalised. 

 Clamped (C):  and  are penalized. 

Where i is the node to be constrained 

Because of the similarities, DS elements can be implemented in FEM codes. 

 

Fig. 5.Assembly of dynamic stiffness matrices 

4.2. Wittrick–Williams algorithm 

Once the global dynamic stiffness matrix of a structure is formed, the zeros of the determinant can be sought to 

determine the natural frequencies. This procedure can be hugely cumbersome because of the transcendental nature 

of the dynamic stiffness elements. Thus the plot of the frequency determinant can cause enormous difficulties. Such 

a plot can also miss coincident natural frequencies. The problem can be avoided by using the well known Wittrick 

and Williams’s algorithm which guarantees that no natural frequencies of the structure are missed. The procedure is 

briefly summarized as follows. 

A trial frequency  is chosen to compute the dynamic stiffness matrix of the final structure which is then 

reduced to its upper triangular form by the usual Gauss elimination to obtain . The number of negative terms on 

the leading diagonal of was defined by Wittrick and Williamsas the sign count s( ) of the matrix. At this point, 

the number (j) of natural frequencies (w) which are lower than the trial frequency ( ) is given by:  

 

where is the number of natural frequencies of single strip elements clamped on their opposite sides which are lower 

than the trial frequency. Assuming  is known, a suitable procedure can be devised, for example the bi-section 

method, to bracket any natural frequency between an upper and lower bound to any desired accuracy. This allows 

quick and precise computations of the natural frequencies without numerically searching for the zeros of the 

determinant which may cause numerical difficulties due to the transcendental nature of stiffness element. 

A drawback of the algorithm lays in computing the  values.In this paper, computation was avoided by using a 

sufficiently fine mesh to ensure at the frequency range of interest. This was achieved by computing the first 

C–C natural frequency of the largest strip by splitting it into narrower strips, applying the DSM and subsequently 

compute the natural frequencies of the global structure that are below the C–C frequency computed earlier. 
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V  RESULTS 

The procedure described above has been implemented in a MATLAB program to allow computation of natural 

frequencies of plates and plate assemblies. The first 11 natural frequencies of a simply supported (SS) square plate 

have been computed by the DSM theory of this paper based on the classical plate theory (CPT). 

Natural frequencies (Hz)for orthotropic plate with various boundary conditions 

SS-F-SS-F SS-SS-SS-F SS-C-SS-F 

No. CPT FEM No. CPT FEM No. CPT FEM 

1 11.421 11.357 1 19.169 19.161 1 14.806 14.723 

2 14.615 14.498 2 40.165 40.140 2 22.490 22.675 

3 26.448 26.329 3 65.812 65.793 3 41.816 41.611 

4 35.310 35.059 4 70.517 70.015 4 71.167 70.660 

5 47.658 47.558 5 83.056 82.882 5 90.720 90.530 

6 65.261 65.176 6 108.882 108.74 6 105.207 105.07 

7 76.791 76.555 7 111.363 111.02 7 110.169 109.83 

8 92.656 92.524 8 150.344 150.13 8 130.295 130.11 

9 104.658 104.53 9 156.479 156.24 9 156.609 156.37 

10 108.905 108.90 10 200.37 200.37 10 166.386 166.31 

11 114.052 114.04 11 200.482 200.39 11 212.452 212.48 

SS-SS-SS-SS SS-C-SS-SS SS-C-SS-C 

No. CPT FEM No. CPT FEM No. CPT FEM 

1 44.661 44.430 1 64.992 64.627 1 91.045 90.528 

2 62.114 62.104 2 80.3659 79.192 2 102.827 102.00 

3 91.596 91.147 3 105.567 105.05 3 124.56 123.95 

4 132.454 131.51 4 142.147 142.05 4 159.245 158.11 

5 160.056 159.72 5 193.035 192.63 5 205.441 205.01 

6 177.872 177.64 6 199.901 199.64 6 244.750 244.43 

7 173.786 183.22 7 216.01 215.35 7 259.037 258.24 

8 207.535 207.24 8 242.265 241.92 8 264.867 264.49 

9 246.69 246.32 9 254.61 254.23 9 282.396 281.99 

10 248.659 248.28 10 280.147 279.72 10 316.914 316.43 

11 300.798 300.66 11 328.148 327.67 11 362.7388 362.21 

The plate considered is made up with a carbon-epoxy orthotropic material defined by its Young's moduli 

and , itsPoisson's ratio , its shear modulus  and 
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its mass density . The  dimensions of the plate are , and its thickness is 

0.002m. 

 

VI CONCLUSION 

 

An exact dynamic stiffness method for an orthotropic plate with two opposite sides simply supported has been 

developed using classical plate theory. Explicit expressions for the terms of the dynamic stiffness matrix for all 

cases have been derived by extensive use of symbolic computation. The dynamic stiffness elements are assembled to 

investigate the free vibration behavior of complex structures following a procedure similar to that used in the finite 

element method. Once the dynamic stiffness matrix for the overall structure is formulated the eigenvalue problem is 

solved by using a modified version of the Wittrick and Williams algorithm. 

The complete procedure starting from the development of the dynamic stiffness matrix and finishing with the 

calculation of natural frequencies has been implemented in a computer program using MATLAB. This enables 

computation of any number of exact natural frequencies of plates. Numerical results for a wide range of problems 

have been computed. These include prismatic plates with two opposite sides simply supported and the other two 

having any combination of boundary condition, such as simple support, clamped (built-in) support, or free edge. 

The computed natural frequencies have been compared against results obtained by the finite element method with 

commercial FEA software application like Ansys 14. Very good convergence of both results was observed. Those in 

advantages of the DSM formulation presented are lower memory cost, higher precision and shorter computation 

time. 

 

APPENDIX  

Explicit expressions of the elements of the dynamic stiffness matrix are given as follows: 

 

 

 

 

 

 

Where  
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