

133 | P a g e

APPROACH TO IMPROVE PERFORMANCE ON

DEMAND TASK SCHEDULING AND LOAD

BALANCING IN CLOUD COMPUTING

ENVIRONMENT

S. Chithra
1
, Dr. J. Anitha

2

1
PG Scholar, Computer Science and Engineering,

2
Associate Professor, Department of Information Technology,

Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, (India)

ABSTRACT

Cloud computing is emerging as a new paradigm for manipulating, configuring, and accessing large scale

distributed computing applications over the network. Load balancing is one of the main challenges in cloud

computing which is required to distribute the workload evenly across all the nodes. Properly dispatching tasks

among CPU cores is crucial to reduce response time of jobs, which provides benefit for both systems. A hybrid

scheme of task scheduling and load balancing named DeMS is proposed. DeMS consists of three algorithms,

including On-Demand scheduling, Querying and Migrating Task (QMT) and Staged Task Migration (STM). The

proposed On-Demand scheduling algorithm is used to decrease the communication overhead between a master

and slaves. QTM is designed to keep the workload balanced. Data Shuffling is used to represent interactions

between stages. The system performance can be increase by reducing the response time and also have high

applicability, low latency, avoid overloaded.

Index Terms: Cloud Computing, Task Scheduling, Load Balancer, Load Balancing, Load

Balancing Algorithm.

I. INTRODUCTION

Cloud computing is a computing paradigm, where a large pool of systems are connected in private or public

networks, to provide dynamically scalable infrastructure for application, data and file storage. With the advent

of this technology, the cost of computation, application hosting, content storage and delivery is reduced

significantly.

Cloud computing is a practical approach to experience direct cost benefits and it has the potential to transform a

data centre from a capital-intensive set up to a variable priced environment.

The idea of cloud computing is based on a very fundamental principal of reusability of IT capabilities. The

difference that cloud computing brings compared to traditional concepts of “grid computing”, “distributed

computing”, “utility computing”, or “autonomic computing” is to broaden horizons across organizational

boundaries.

134 | P a g e

There are certain services and models working behind the scene making the cloud computing feasible and

accessible to end users. Following are the working models for cloud computing:

 Deployment Models

 Service Models

1.1. Deployment Models

Deployment models define the type of access to the cloud. Cloud can have any of the four types of access:

Public, Private, Hybrid and Community.

1.1.1. Public Cloud

The Public Cloud allows systems and services to be easily accessible to the general public. Public cloud may be

less secure because of its openness, e.g., e-mail.

1.1.2. Private Cloud

The Private Cloud allows systems and services to be accessible within an organization. It offers increased

security because of its private nature.

1.1.3. Community Cloud

The Community Cloud allows systems and services to be accessible by group of organizations.

1.1.4. Hybrid Cloud

The Hybrid Cloud is mixture of public and private cloud. However, the critical activities are performed using

private cloud while the non-critical activities are performed using public cloud

1.2. Service Models

Service Models are the reference models on which the Cloud Computing is based. These can be categorized into

three basic service models as listed below:

 Infrastructure as a Service (IaaS)

 Platform as a Service (PaaS)

 Software as a Service (SaaS)

1.2.1. Infrastructure as a Service (IAAS)

IaaS provides access to fundamental resources such as physical machines, virtual machines, virtual storage, etc.

1.2.2. Platform As A Service (Paas)

PaaS provides the runtime environment for applications, development & deployment tools, etc.

1.2.3.Software As A Service (Saas)

SaaS model allows to use software applications as a service to end users

II. LOAD BALANCING

Load balancing in clouds is a technique that distributes the excess dynamic local workload evenly across all the

nodes. It is used for achieving a better service provisioning and resource utilization ratio, hence improving the

overall performance of the system Incoming tasks are coming from different location are received by the load

balancer and then distributed to the data center, for the proper load distribution

135 | P a g e

The aim of load balancing is as follows:

 To increase the availability of services

 To increase the user satisfaction

 To maximize resource utilization

 To reduce the execution time and waiting time of task coming from different location.

 To improve the performance

 Maintain system stability

 Build fault tolerance system

 Accommodate future modification

III. RELATED WORKS

Gang Scheduling in Multi-Core Clusters Implementing Migrations (Papazachos ZC, Karatza HD)[10]

A proper

scheduling algorithm is essential for the efficient utilization of the available resources of complex distributed

systems. The scheduling algorithm is responsible for allocating the available system resources to the existing

jobs. The emergence of multi-core processors poses new demands on schedulers. The performance of gang

scheduling algorithms for homogeneous and heterogeneous clusters which consist of multi-core processors.

Furthermore, a migration schema is suggested which is suitable for scheduling gangs in multi-core clusters. A

simulation model is used to provide results on the performance of the system. The main advantages of this

the

time taken for resources allocation was decreased and system performance is improved. And the limitation is

increase the communication overhead between masters and slaves.

Delay Scheduling Achieving locality and Fairness in Cluster Scheduling(Olgac N, Ergenc AF,Sipahi R) [9]

As

organizations start to use data-intensive cluster computing systems like Hadoop and Dryad for more

applications, there is a growing need to share clusters between users. However, there is a conflict between

fairness in scheduling and data locality (placing tasks on nodes that contain their input data). We illustrate this

problem through our experience designing a fair scheduler for a 600-node Hadoop cluster at Face book. To

address the conflict between locality and fairness, we propose a simple algorithm called delay scheduling when

the job that should be scheduled next according to fairness cannot launch a local task, it waits for a small

amount of time, letting other jobs launch tasks instead. We find that delay scheduling achieves nearly optimal

data

locality in a variety of workloads and can increase throughput by up to 2x while preserving fairness. In

addition, the simplicity of delay scheduling makes it applicable under a wide variety of scheduling policies

beyond fair sharing
.
 The main Advantages is Double throughput in an IO-heavy workload and improve response

time. And disadvantages are High latency due to increase in waiting time and low applicability due to

dependency.

The Power of Two Choices in Randomized Load Balancing (Pratt B, Howbert JJ, Tasman NI, Nilsson)[11] The

following natural model: Customers arrive as a Poisson stream of rate _n, _ < 1, at a collection of n servers.

Each customer chooses some constant d servers independently and uniformly at random from the n servers and

waits for service at the one with the fewest customers. Customers are served according to the first-in first-out

(FIFO) protocol and the service time for a customer is exponentially distributed with mean 1.This problem the

136 | P a g e

supermarket model. The Advantages of this was easier to analyze because its behaviour is completely

deterministic. And limitations are the supermarket model proves difficult to analyze dependencies task

and

reduce the system performance.

Randomized Load Balancing with General Service Time Distributions (Husain MF, Doshi P, Khan L,

Thuraisingham B) [5] A modularized program for treating randomized load balancing problems with general

service time distributions and service disciplines. The program relies on an ansatz which asserts that any finite

set of queues in a randomized load balancing scheme becomes independent as n → ∞. This allows one to derive

queue size distributions and other performance measures of interest. To establish the ansatz when the service

discipline is FIFO and the service time distribution has a decreasing hazard rate (this includes heavy-tailed

service times). Assuming the ansatz, we also obtain the following results: (i) as n → ∞, the process of job

arrivals at any fixed queue tends to a Poisson process whose rate depends on the size of the queue, (ii) when the

service discipline at each server is processor sharing or LIFO with pre-emptive resume, the distribution of the

number of jobs is insensitive to the service distribution, and (iii) the tail behaviour of the queue-size distribution

in terms of the service distribution for the FIFO service discipline. The main advantage of this System

performance is well tuned which reduce the collisions and waiting time. And Limitations is

Load balancing is a

problem to distribute tasks among multiple resources and Increase overhead communication.

IV. PROPOSED SYSTEM

The proposed hybrid scheduling scheme called DeMS was introduced and On-Demand scheduling method was

used to reduce communication over head between masters and slaves. A task migration algorithm is designed to

keep the workload balanced. A data shuffling mechanism is employed for dependent tasks.

 For independent tasks, an On-Demand scheduling method is proposed. The probe-based state collection

mechanism is renounced to avoid additional communication cost. In our approach, the master keeps a light-

weight meta data of each slave. When a slave has enough resources to run a new task, it sends a short frame

to the master to indicate its idle state.

 A task migration algorithm is proposed in DeMS to guarantee load balance for a cluster. The master

maintains a timer for each slave .When a slave reports an idle state; the master will launch a task migration

procedure for another slave which has worked for a long time. Task migration is a big burden for any parallel

system. We deal with this issue by enabling the master to maintain a list of the last tasks dispatched to each

slave. Thus, a slave need not send the task to be migrated back to the master for rescheduling

 For dependent tasks, dependencies between tasks are abstracted as data shuffling processes. A job is divided

into several stages according to the execution order, and proposed Staged Task Migration (STM) algorithm,

in which a task migration loop is designed to guarantee the most balanced workload for each stage

4.1. Flow chart for the proposed framework distributing the task

Distributing the task among the slaves using On-Demand scheduling algorithm. On-Demand scheduling method.

137 | P a g e

2.2. Distributing the task using On Demand scheduling

Each slave has an observer to monitor its task queue. When the observer detects that the slave has enough

resources for a new task, it will send an On-Demand request to the master that keeps a light weighted metadata

of the slave. In the On-Demand scheduling, we define metadata for a slave as S = {id}; All slaves are indexed

by the slave id. The field of state is a Boolean value. When state {1}, the slave is in an idle state. After

dispatching a new task to a slave, the master will set its state as 0 and the On-Demand request can reset the state

as 1

2.3. Task Migration

In order to dispatch at ask to the slave with the least load, traditional approaches utilize the length of task queue

to represent the queuing load of slaves.

SC
HE

DU
LE

R

slave

slave

slave

slave

.

.

.

S1 S2 S3 SC.......... S={id, state, q, t, ptr}

Task to be migrated

rescheduling

slave metadata

Fig 4.2. Migrating process

That predicting the waiting time of a queued task based solely on queue length is typically in effective. But the

total processing time of the queued tasks is unknown to either the slave or the master. Though the On- Demand

mechanism can ensure the scheduler to assign the task to an idle slave, it is not necessarily the one with the least

load. For the On-Demand scheduling method, its dispatch may lead to long response time of task in some cases.

That when a cluster is running with light workload, the scheduler may make the wrong decision because it does

know the processing time of the current running task on the slave. On the contrary, if the cluster is running with

heavy workload, the master may make similar mistake since the queue length cannot represent the real waiting

time directly.

138 | P a g e

2.4. Data Shuffling

Random Two Choices and On-Demand scheduling methods are designed under the assumption that each task

runs independently. This assumption is too strong for real parallel applications. The tasks may be dependent. If a

task has predecessors, it cannot start to run until its predecessor shave finished

SC
HE

DU
LE

R

slave

slave

slave

slave

.

.

.

S1 S2 S3 SC.......... S={id, state, q, t, ptr}

Task to be migrated

rescheduling

slave metadata

T1 T2 T3 Tn..........

Shuffling FIFO

Fig 4.3 Staged Task Migrating.

Based on other distributed computing frameworks (e.g., Spark), we divide a parallel job in to several stages

according to the dependencies among tasks. The tasks in one stage run independently, while the tasks in

different stages must be executed serially. We term this task scheduling context Data shuffling because inter-

communications between stages can be regarded as a process of data transmission among cores. In Data

shuffling, the response time of a job is the sum of response time of each stage.

V. PERFORMANCE EVALUATIONS

The experimental tests were conducted among various slaves with varying memory capacity. The result was

produced based on migration of tasks between the slaves using On Demand Scheduling, Query and Migrating

Task, Stage Task Migration.

5.1. On-Demand vs. Random Two Choices

In order to evaluate the performance of the On-Demand scheduling algorithm in DeMS. The workload of our

cluster is related with the number of tasks in a job and the dispatching period of jobs. Response time of a job is

determined by the response time of the slowest task.

Fig 5.1 On-demand vs. Random Two Choices

139 | P a g e

With the constant task processing time, On-Demand acts better than it does with the random task processing

time.

Table 5.1 Comparison table for load balancing

5.2. Query and Migrating Task

When a cluster works with a heavy work load, each slave has more than one task to be handled and tasks are

queued for processing. In this case, the On-Demand algorithm loses its capacity to dispatch tasks on idle slaves.

The aim of the task migration process is to balance the work load on slaves in the cluster and this mechanism is

designed to reduce the response time of a job. The QMT algorithm on the cluster and run utilize parallel jobs,

each of which consists of many tasks, to simulate a heavy work load .The threshold of λ in QMT is set as an

empirical constant which is twice of the meant ask processing time.

Fig 5.2 Before Migration

Task will be migrated using the formula,

S(t)=overloaded if s(t)>ʎ

Where S(t)=slaves with tasks

 ʎ=threshold value

Fig 5.3 After Migration

PARAMETERS BEFORE

MIGRATION

AFTER

MIGRATION

Number of

overloaded

slaves

2 0

140 | P a g e

Figure 5.3 indicates that with the constant task processing time, STM acts better than it does with the random

task processing time.

In the random task processing time is used. The mean response time of QMT is almost the same as On-Demand

when the dispatching period is longer than 600 ms. Then, the workload of the cluster is increased and QMT acts

better than On-Demand.

5.3. Dependent Tasks Scheduling

For a job consisting of dependent tasks, the tasks in the next stage must be suspended until their precursors are

finished. We propose an algorithm named STM to handle this kind of tasks. In STM, each stage is regarded as a

sub job and a staged task migration process is applied to each stage to seek the least stage response time. In this

graph divide a job consisting of 4000 tasks in to two equal groups and assume that the two groups must be

executed serially

Fig 5.4 Staged Task Migration

VI. CONCLUSION

A hybrid task scheduling and load balancing scheme called DeMS, which consists of an On-Demand scheduling

method, a QMT algorithm for task migration and an STM algorithm for dispatching tasks. On-Demand

scheduling method can significantly reduce the response time of parallel jobs. QMT and STM are effective for

independent and dependent tasks scheduling. The future work of the proposed system is to two fold integrating

DeMS with real scheduling frameworks, such as mesosand YARN (2) The network delay and task migration

time to design more efficient scheduling methods.

REFERENCES

[1] Bramson M, LuY, Prabhakar B. Randomized “Load balancing with general service time distributions.” In:

ACMSIGMETRICS performance evaluation review, ACM, New York, vol. 38, pp. 275–86, 2010.

[2] Dean J. “Achieving rapid response times in large online services.” In: Berkeley AMP Lab cloud seminar,

2012.

[3] H.D. Karatza, “Performance analysis of gang scheduling in a parallel Proceedings of the 20th

European Conference on Modelling and Simulation”, Germany, pp. 699–704, 2006.

[4] Hindman B, Konwinski A, Zaharia M, Ghodsi A ,Joseph AD, KatzRH Mesos:“A platform for fine-

grained resource sharing in the datacenter” In: NSDI, vol.11, pp. 295–308, 2011.

141 | P a g e

[5] Husain MF, Doshi P, Khan L, Thuraisingham B, “Storage and retrieval of larger rdf graph using hadoop

and mapreduce”. In: Cloud computing. Springer, Berlin, pp. 680–6, 2011.

[6] Mitzenmacher M. ”The power of two choices in randomized load balancing”, IEEE

TransParallelDistribSyst, vol. 12, no.10, pp. 1094–104, 2011.

[7] Moschak is IA, Karatza HD ” Evaluation of gang scheduling performance and cost in a cloud computing

system”. JSupercomput, vol. 59, no. 2, pp. 975–92, 2009.

[8] Muralidhar K, Sarathy R.” Data shuffling-a new masking approach for numerical data”. ManagSci, vol.

52, no.5, pp. 658–70, 2006.

[9] Olgac N, Ergenc AF,Sipahi R “Delay scheduling :a new concept for stabilization in multiple delay

systems” JVibControl, vol. 11,no. 9, pp. 1159–72, 2005.s

[10] Papazachos ZC, Karatza HD. “Gang scheduling in multi-core clusters implementing migrations.”

FutureGenerComputSyst, vol. 27, no.8, pp. 1153–65, 2011

[11] Pratt B, Howbert JJ, Tasman NI, Nilsson EJ, Mr-tandem :parallelx! “Tandem using hadoop map reduce on

amazon webservice”. vol. 28, no.1, pp. 136–7, 2012.

[12] M, Franklin MJ, Shenker S, StoicaI, “Spark: cluster computing with working sets”. In: Proceedings of the

2
nd

 USENIX conference on hot topics in cloud computing, pp. 10, 2010

