# International Journal of Advanced Technology in Engineering and Science Vol. No.4, Issue No. 03, March 2016

# WWW.ijates.com DESIGN AND DEVELOPMENT OF THE JIG AND AUTOMATED SYSTEM FOR DRILLING OPERATION ON SLACK ADJUSTER

# Sachin Rao<sup>1</sup>, Rupesh Bhamare<sup>2</sup>, Sudarshan Rathod<sup>3</sup>

<sup>1,2,3</sup>B.E. Scholar GES'S R. H. Sapat COE, Nashik B.E. Mechanical, Pune University

#### ABSTRACT

The project is related to a cycle time optimization for the drilling operations on slack adjuster. Slack Adjuster is part of air brake assembly. After forging operation various drilling operations are to be performed on it. Presently, with manual setup more time & human effort is required for alignment purpose and to perform operation, also it does not meet the tolerance requirement. So, there is need to develop a system which can help in improving the accuracy of operation, productivity and reduce the cycle time and human efforts. The main aim or objective of this project is to design a jig & automated system so that the operations will be done with proper alignment to meet the desired tolerances and reduced human effort. Jig reduces operation time and increase productivity and high quality of operation is possible. As this operation required more pressure and human efforts combination of hydraulics and electronics system is to be implemented for automation purpose.

Keywords: Alignment, Automation, Fixture, Jig, Slack Adjuster.

#### I. INTRODUCTION

The project is related to a cycle time optimization for the drilling operations on slack adjuster. Slack Adjuster is part of air brake assembly. After forging operation various drilling operations are to be performed on it (Fig.No.1). Presently, with manual setup more time & human effort is required for alignment purpose and to perform operation, also it does not meet the tolerance requirement. So, there is need to develop a system which can help in improving the accuracy of operation, productivity and reduce the cycle time and human efforts. The main aim or objective of this project is to design a jig & automated system so that the Operations will be done with proper alignment to meet the desired tolerances and reduced human effort. Jig reduces operation time and increase productivity and high quality of operation is possible. As this operation required more pressure and human efforts combination of hydraulics and electronics system is to be implemented for automation purpose.

#### **1.1 Problem Statement**

Slack Adjuster is part of air brake assembly. After forging operation various drilling operations are to be performed on it [Fig.No.1]. Presently, with manual setup more time & human effort is required for alignment purpose and to perform operation, also it does not meet the tolerance requirement. So, there is need to develop a system which can help in improving the accuracy of operation, productivity and reduce the cycle time and human efforts.

Vol. No.4, Issue No. 03, March 2016 www.ijates.com





# **Fig.1 Drilling operation**

## 1.2 Objective

- To achieve required tolerances.
- To reduce the human efforts.
- To reduce the cycle time required for operation.
- To achieve Line-balancing in gang drilling set up.
- To increase productivity by Automatic operations.

#### 1.3 Scope

- Use of Jig or Fixture to achieve required tolerances.
- Use of hydraulic system to reduce the human efforts.
- Use of hydraulic clamps to reduce the cycle time required for operation.
- Perform Time-study to achieve Line-balancing in gang drilling setup.
- Use of Automatic operations to increase productivity.

# **II. TIME STUDY OPERATION ON SLACK ADJUSTER**

2.1 Time Study for Operation Carry on Slack Adjuster

Problem: Line - Unbalancing

The following Table shows the sequence of operation to be performed on slack adjuster and average time required for each operation.

Vol. No.4, Issue No. 03, March 2016

# www.ijates.com

| Operation    | Machine /Instrument              | Time (Avg. ),Sec.   |
|--------------|----------------------------------|---------------------|
| Spot Facing  | Drilling Machine                 | 6.4                 |
| Cross Hole   | Drilling Machine                 | 23.63               |
| Drilling , D | Drilling Machine                 | 61 .10              |
| Reaming      | Drilling Machine                 | 18.43               |
| Drilling , d | Drilling Machine                 | 43.7                |
| Counter Bore | Drilling Machine                 | 12.59               |
| Tapping      | Tapping Machine                  | 21.34               |
| Burr removal | Hand Grinder                     | 8.23                |
| Inspection   | Go, NO-GO Gauges, Dial indicator | 145.4               |
|              | Total Time Required              | 340.82 (5.680 min.) |

## Table1. Time Study for Operation Carry on Slack Adjuster

Solution: By making automated system for drilling operation we can reduce the time required for drilling operation and simultaneously person can perform Reaming operation on next setup.

# **2.2 Drilling Calculation**

- 1) Speed,
  - n = 600 RPM
- 2) Drill Diameter, Dc = 13.5 mm
- 3) No. of Flutes, z = 2
- 4) Cutting Speed,

 $Vc = (Dc^*\pi^*n)/(1000) = (13.5^*\pi^*600)/(1000) = 25.449 \text{ m/min}$ 

- 5) Feed, f = 0.2 mm
- 6) Feed rate,

 $Vf = f^*n = (0.2*600) = 120 \text{ mm/min}$ 

7) Metal Removal Rate,

 $Q = (Vf^* \pi^*Dc^2)/(4^{*1000}) = (120^* \pi^*13.5^2)/(4^{*1000}) = 17.17665 \text{ cm}^3/\text{min}$ 

8) Specific cutting force,

```
Kc = 2000 \text{ N/mm}^2
```

9) Torque,

 $Mc = (Dc^{2*}Kc*f)/(8000) = (13.5^{2*}2000*0.2)/(8000) = 9.1125 \text{ N-m}$ 

10) Feed force / Axial force,

Ff = (0.63\*f\*Dc\*Kc)/(2) = (0.63\*0.2\*13.5\*2000)/(2)=2000 N

ijates

ISSN 2348 - 7550

# International Journal of Advanced Technology in Engineering and Science Vol. No.4, Issue No. 03, March 2016 ijates ISSN 2348 - 7550

www.ijates.com

| Drilling Parameters    |    | Values      | Units                |
|------------------------|----|-------------|----------------------|
| Speed                  | n  | 600         | RPM                  |
| Drill Diameter         | Dc | 13.5        | MM                   |
| Number of fluets       | Z  | 2           |                      |
| Cutting Speed          | Vc | 25.449      | M/MIN                |
| Feed                   | f  | 0.2         | ММ                   |
| Feed rate              | Vf | 120         | MM/MIN               |
| Metal removal rate     | Q  | 17176.65783 | CM <sup>3</sup> /MIN |
| Torque                 | Мс | 9.1125      | N-M                  |
| Axial force            | Ff | 2160        | Ν                    |
| Specific cutting force | Кс | 2000        | N/MM <sup>2</sup>    |

# **2.3 Drilling Parameters**

# **Table 2. Drilling Parameters**

# **III. DESIGN OF JIG**<sup>[1]</sup>

# **3.1 Introduction**

Presently, company manufacturing three types of slack adjusters with same features and different dimensions. For this purpose two to three jigs/fixtures with different configurations are in use. For new job order of slack adjuster new jig/fixtures needs to be design .This will increase accuracy and productivity of operations.

# 3.2 Design of jig (Calculation)

Top Plate •

Dimensions = 100mm\*45mm

Middle Plate

Dimensions = 120mm\*100mm Material = Mild Steel (Ref. Design data page 1.10)

Syt = 400 N/mm2 (Ref. Design data page 1.11)

Factor of Safety = Nf = 1.5

Shear Stress =  $(0.5*Syt/Nf) = (0.5*400/1.5) \tau = 133.33 \text{ N/mm}^2$ 

**Calculating Thickness** 

 $\tau = (P/2*b*t)$ 133.33 = (2160/2\*100\*t) t= 12.34 mm ~ 15mm

Checking for Bending

 $M = P^*e = 2160^*38 = 82080 \text{ N-mm}$ 

 $Ixx = (1/12) * bt^3$ 

# Vol. No.4, Issue No. 03, March 2016

#### www.ijates.com

 $= (1/12)^* 100^* 15^3 = 28125 \text{ mm}^4$ 

6b = (M\*x/Ixx)

= (82080\*38/28125)

=145.92 N/mm<sup>2</sup> < 6b Required

Hence design is safe against bending

Bottom Plate

Dimensions = 100mm\*120mm

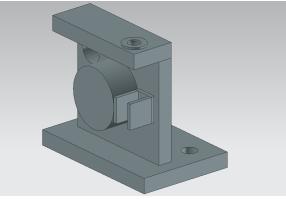
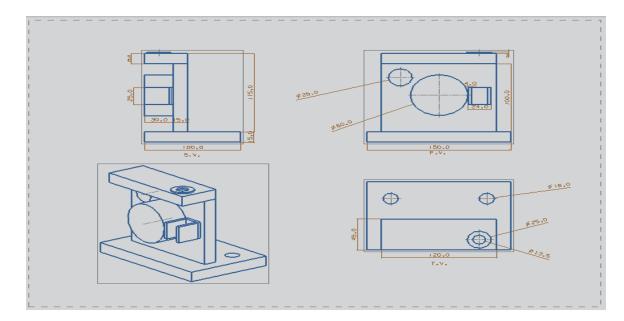




Fig.2 3-D Model of Jig

## 3.3 Design Drawing of Jig

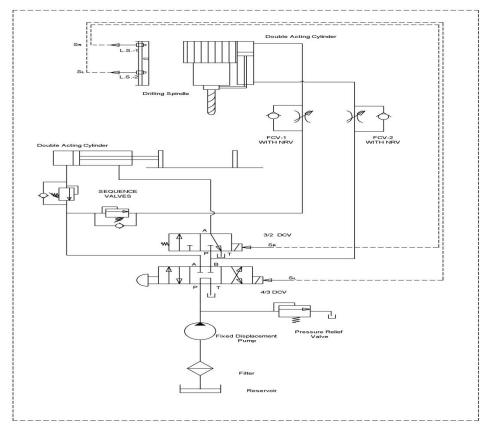


## Fig. 3 2-D Drawing of Jig

## **IV.AUTOMATION OF DRILLING OPERATION**

For Automation of Drilling Operation we designed General Hydraulic circuit for drilling operation.




# Vol. No.4, Issue No. 03, March 2016

#### www.ijates.com

# 4.1 Hydraulic Circuit

In Hydraulic Circuit Sequence of operation is as follws:

- a) Clamping of workpiece
- b) Downward motion of drill
- c) Upward motion of drill
- d) Unclamping of workpiece



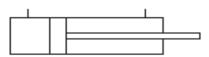
#### Fig4. Hydraulic Circuit for Drilling Automation

#### Explanation of Circuit

1) Actuated position

- In this circuit, as the push button is operated the oil flows from tank to the pump inlet through the filter. Pump gives pressurized oil to 4/3 D.C. Valve.
- In this position of DCV, the port P is connected to port A and port B is connected to port T.
- The oil will flows from DCV to inlet port of clamping cylinder throw sequence valve1. The oil in cylinder pushes the piston from face side and clamping of job takes place. Oil present at rod end sends to tank throw port B.`
- As pressure starts building in cylinder it actuate sequence valve2 and oil starts flowing throw it and passes from flow control valve to inlet port of double acting cylinder it pushes piston in downward direction and drill starts moving downward this motion continues till it reaches to limit switch2 position.
- Oil present at rod end side of cylinder directly send to reservoir.




# Vol. No.4, Issue No. 03, March 2016

#### www.ijates.com

2) Return Position

As the drill reaches to limit switch2 position it actuates 4/3 DCV in third position and connection of port becomes reverse.

- Oil starts flowing from DCV to rod end side of cylinder and starts moving drill in upward motion this motion of drill continues till it reaches to limit switch1 position.
- As it reaches to limit switch1 position it actuates 3/2 DCV in first position and oil starts flowing to rod end side of clamping cylinder, which pushes the piston back and this action tends to unclamping of job.
- Oil present at other end of clamping cylinder is directly send to reservoir.
- In this manner cycle repeats.
- 4.2 Design for Hydraulic system (Calculation) [4] [6]
  - Selection of the cylinder



#### Fig.5 Symbol of Hydraulic Cylinder

Q = A\*V P = F/A

Maximum working pressure= 210 bar

 $210*10^5 = [2160/(\pi/4)*d^2]$ 

d= 11.44 mm

| Model | Bore diameter | Rod diameter |
|-------|---------------|--------------|
| A1    | 25            | 12.5         |
| A2    | 40            | 16           |
| A3    | 50            | 35           |
| A4    | 75            | 45           |
| A5    | 100           | 50           |

#### Table 3. Selection of the cylinder

From Table, A1 model is selected.

Bore diameter, d= 12.5mm

Rod diameter, D= 25mm

• Selection of Pump



#### Fig.6 Symbol of Pump

Since total stroke of cylinder = 150mm

Full bore area = $A = \pi r^2 = (\pi * 12.5^2) = 490.87 \text{ mm}^2$ 

Anulus area =  $(\pi/4)^*(D^2 - d^2) = (\pi/4)^*(25^2 - 12.5^2) = 368.15 \text{ mm}^2$ 

Max. working pressure =  $(load/area) = (2160/4.90*10^{-4}) = 44.08$  bar



# Vol. No.4, Issue No. 03, March 2016

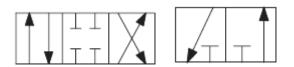
## www.ijates.com

ijates ISSN 2348 - 7550

Velocity of piston = (150/20) = 7.5 mm/s

Flow required = Area\*velocity = (490.87\*7.5) = 0.02205 lit/min

| Model | Pressure (Bar) | Delivery (m <sup>3</sup> /s) |
|-------|----------------|------------------------------|
| P1    | 65             | 12*10 <sup>-3</sup>          |
| P2    | 75             | 2*10 <sup>-3</sup>           |
| P3    | 75             | 6*10 <sup>-3</sup>           |


 Table 4. Selection of the pump

Pump P1 is selected

Pressure= 65 bar

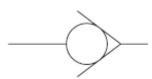
Delivery=  $12*10^{-3} \text{ m}^{3}/\text{s}$ 

• Selection of DCV



# Fig.7 Symbol of DCV

| Model | Pressure (Bar) | Delivery (m <sup>3</sup> /s) |
|-------|----------------|------------------------------|
| D1    | 100            | 12*10 <sup>-3</sup>          |
| D2    | 90             | $2*10^{-3}$                  |
| D3    | 85             | 6*10 <sup>-3</sup>           |


# Table 5. Selection of the DCV

DCV D2 is selected

Pressure= 90 bar

Delivery=  $2*10^{-3} \text{ m}^{3}/\text{s}$ 

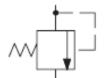
• Selection of check valve



## Fig.8 Symbol of Check Valve

| Model | Pressure (Bar) | Delivery (lpm) |
|-------|----------------|----------------|
| C1    | 85             | 12             |
| C2    | 100            | 2              |
| C3    | 80             | 6              |

# Table 6. Selection of the check valve


Check valve C2 is selected Pressure= 100 bar Delivery= 2 lpm

# Vol. No.4, Issue No. 03, March 2016

# www.ijates.com

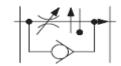
ijates ISSN 2348 - 7550

• Selection of Relief valve



## **Fig.9 Symbol of Relief Valve**

| Model | Pressure (Bar) | Delivery (lpm) |
|-------|----------------|----------------|
| R1    | 100            | 12             |
| R2    | 110            | 2              |
| R3    | 105            | 6              |


# Table 7. Selection of Relief valve

Relief valve R2 is selected

Pressure =110 bar

 $Delivery = 2 \ lpm$ 

• Selection of Flow control valve



## Fig.10 Symbol of Flow control valve

Q = Annulus Area\* Velocity =  $(3.6815*10^{-4}*0.105) = 3.8655*10^{-2}$ lpm

| Model | Pressure (Bar) | Flow Range (lpm) |
|-------|----------------|------------------|
| F1    | 70             | 0-4.1            |
| F2    | 105            | 0-4.9            |
| F3    | 105            | 0-16.3           |
| F4    | 70             | 0-24.6           |

## Table 8. Selection of Flow control valve

Flow control valve F1 is selected

Pressure = 70 bar ; Flow Range = 0-4.1 lpm

• Selection of Reservoir



## Fig.11 Symbol of Reservoir

# International Journal of Advanced Technology in Engineering and Science Vol. No.4, Issue No. 03, March 2016 ijat

www.ijates.com



| $D^{1} = 1$ ( $C_{11} = 1^{1} = 1$ | $( (1) + D^{2*} ) = 1 $     | 1 00+10-4+0 150          | 0.5 + 1.0 - 2 1 6 1       |
|------------------------------------|-----------------------------|--------------------------|---------------------------|
| Displacement of the cylinder =     | $(\pi/4)^*D^2$ stroke = (4) | $4.90*10^{-*}0.150) = 7$ | $.35*10^{-11}$ lit of oil |
|                                    |                             |                          |                           |

| Model | Capacity (lit) |
|-------|----------------|
| T1    | 40             |
| T2    | 100            |
| T3    | 250            |
| T4    | 400            |
| T5    | 600            |

# Table 9. Selection of Reservoir

Oil Reservoir T1 is selected

Capacity = 40 lit

## 4.3 Selection of Hydraulic Components

| Component          | Model | Specifications                                | Qty. |
|--------------------|-------|-----------------------------------------------|------|
| DA Cylinder        | A1    | Bore Dia.:25 mm                               | 2    |
|                    |       | Rod Dia.:12.5 mm                              |      |
| Pump               | P1    | Pressure= 65 bar                              | 1    |
|                    |       | Delivery= $12*10^{-3} \text{ m}^{3}/\text{s}$ |      |
| DCV                | D2    | Pressure= 90 bar                              | 2    |
|                    |       | Delivery= 2*10-3 m3/s (4/3 & 3/2)             |      |
| Check valve        | C2    | Pressure= 100 bar                             | 2    |
|                    |       | Delivery= 2 lpm                               |      |
| Relief valve       | R2    | Pressure =110 bar                             | 1    |
|                    |       | Delivery = 2 lpm                              |      |
| Flow control valve | F1    | Pressure = 70 bar                             | 2    |
|                    |       | Flow Range = 0-4.1 lpm                        |      |
| Sequence Valve     | S2    | Pressure =70 bar                              | 2    |
|                    |       | Delivery = 2 lpm                              |      |
| Oil Reservoir      | T1    | Capacity = 40 lit                             | 1    |

## Table 10. Selection of Hydraulic Components

# **V. CONCLUSION**

With manual setup more time & human effort was required for alignment purpose and to perform operation, also it did not meet the tolerance requirement. Due to this company was not able to take more job orders of Slack Adjuster. After studying manual system it was observed that unbalanced lines , inaccuracy in mounting of fixtures , vibrations , heavy human efforts affecting the accuracy and productivity of production line.

# International Journal of Advanced Technology in Engineering and Science Vol. No.4, Issue No. 03, March 2016

#### www.ijates.com

After implementation of Automated system it is observed that there is reduction in human efforts. Also, accuracy is improved by using proper jig/fixture design and mounting. Productivity is increased by proper time study and line balancing. After successful implementation of above, company is now able to take more job orders of slack adjuster. There is much reduction in cycle time with improved accuracy and productivity. Now one person can handle two machines due to this there is reduction in labour cost and the overall effect of this is nothing but increase in profit of company.

#### REFERENCES

- [1] K.R. Wardak, U. Tasch, and P.G. Charalambides, "Optimal Fixture Design for Drilling Through Deformable Plate Workpieces Part I: Model Formulation" Dept. of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA,2001.
- [2] Hiroki Endo, Toshihiko Murahashi, Etsuo Marui, "Accuracy estimation of drilled holes with small diameter and influence of drill parameter on the machining accuracy when drilling in mild steel sheet", Department of Mechanical and Systems Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu-shi 501-1193, Japan, 20 March 2006.
- [3] KeYanga, Shangjun Guan, Cunlong Wang," The design & calculation for hydraulic cylinder of workpiecehydraulic clamping system of a special CNC machine for guide disc", College of Mechanical Engineering, BeiHua University, Jilin 132021, China,2011.
- [4] Andrew Parr, Hydraulics and Pneumatics, Butterworth-Heinemann, 25-Feb-1999- Technology and Engineering, pp. 50-55.
- [5] https://www.hydraproducts.co.uk/hydraulic-calculation/known-cylinder.aspx
- [6] https://www.engineeringtoolbox.com/hydraulic-force-calculation-1369.html

ISSN 2348 - 7550