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ABSTRACT 

 In digital life there is a growing demand for real time implementation of cryptographic algorithms which are 

being used in secure communication systems, networks and security systems. In  this research paper a novel 

reconfigurable processor architecture has been presented for cryptographic applications that bridges the gap of 

traditional computing techniques and also sustains implementations that can show equal or even better 

performance results than custom hardware. This work presents an emerging reconfigurable hardware that 

potentially delivers flexible high performance for cryptographic algorithms. A cryptographic processor with 

public and private key pair generator and modulo multiplier based both encryptor and decryptor for text 

message was designed. The hardware design of RSA processor by employing Montgomery multiplier technique 

to reduce the execution delay time and the thermal power dissipation was compared and proved. 
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I. INTRODUCTION 

 

Digital signal processors and cryptographic cores are strategically implemented in Residue Number System 

(RNS) . For example, the RNS based implementation of a simplistic 16-tap transpose filter exhibited 25% 

reduction in delay compared to a Two's Complement System (TCS) based implementation . It was reported that 

the FPGA implementation of RNS adaptive filter was 65% faster than that of TCS filter. The RNS 

implementation of a 192-bit elliptic curve point multiplier operating at a maximum clock frequency of 53 MHz 

was found to exceed the performance of the contemporary TCS implementation by 33%. 

Techniques such as multi-modulus and multi-function architectures to minimize the hardware redundancy as 

well as multi-threshold voltage and multi-supply voltage designs to lower the power dissipation have been 

suggested. Such control techniques are intended for algorithm level design space exploration and are applicable 

to generic modulo arithmetic architectures. For architecture level simplification of specific modulo arithmetic 

operations like modulo multiplication, techniques that explore unique number theoretic properties of special 

moduli of the forms 2
n
 and 2

n
 ± 1 have received wide spread attention amongst others. While modulo 2

n
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multiplier can be simplified to a two's complement multiplier with the output truncated to n-bits, modulo 2
n
 - 1 

and modulo 2
n
 + 1 multipliers need additional circuitries to modulo-reduce the product. 

 

II. CRYPTOGRAPHY  

 

Data security and cryptography are critical aspects of conventional computing. Here we provide basic 

terminology used in cryptography. Cryptography is the most important aspect of communications security. In 

data and telecommunication, cryptography is necessary when communicating over any untrusted medium, 

which just about any network, particularly the Internet. The goal is to transmit a message between a sender and 

receiver such that an eavesdropper is unable to understand it. Plaintext refers to a sequence of characters drawn 

from a finite alphabet, such as that of a natural language. 

Encryption is the process of scrambling the plaintext using a known algorithm and a secret key. The output is a 

sequence of characters known as the cipher text. Decryption is the reverse process, which transforms the 

encrypted message back to the original form using a key.  

The goal of encryption is to prevent decryption by an adversary who does not know the secret key. An 

unbreakable cryptosystem is one for which successful cryptanalysis is not possible. Such a system is the one-

time-pad cipher. It gets its name from the fact that the sender and receiver each possess identical notepads filled 

with random data. Each piece of data is used once to encrypt a message by the sender and to decrypt it by the 

receiver, after which it is destroyed. 

 

 

 

 

 

Fig 1:  General diagram of cryptography 

 

2.1 Private Key Cryptography 

In private-key cryptography, the sender and recipient agree beforehand on a secret private key. The plaintext is 

somehow combined with the key to create the cipher text. The method of combination is such that, it is hoped, 

an adversary could not determine the meaning of the message without decrypting the message, for which he 

needs the key. 

 

  

 

 

 

 

 

 

Fig 2 :   Encryption  process in Secret  Key Cryptography 
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To break a message encrypted with private-key cryptography, an adversary must either exploit a weakness in the 

encryption algorithm itself, or else try an exhaustive BLAKErch of all possible keys (brute force method). If the 

key is large enough (e.g., 128 bits), such a BLAKErch would take a very long time (few years), even with very 

powerful computers. 

Private-key methods are efficient and difficult to break. However, one major drawback is that the key must be 

exchanged between the sender and recipient beforehand,   raising the issue of how to protect the secrecy of the 

key. When the President of the United States exchanges launch codes with a nuclear weapons site under his 

command, the key is accompanied by a team of armed couriers. Banks likewise use high security in transferring 

their keys between branches. These types of key exchanges are not practical, however, for e-commerce between, 

say, amazon.com and a casual web surfer. 

 

 

 

 

 

 

 

 

Fig 3:  Decryption Process in Secret Key Cryptography 

The main problem with secret-key cryptosystems is getting the sender and receiver to agree on the secret key 

without anyone else finding out. This requires a method by which the two parties can communicate without fear 

of eavesdropping. However, the advantage of secret-key cryptography is that it is generally faster than public-

key cryptography. 

 

2.2 Public Key Cryptography 

Public Key cryptography uses two keys Private key (known only by the recipient) and a Public key (known to 

everybody). The public key is used to encrypt the message and then it is sent to the recipient who can decrypt 

the message using the private key. 

The message encrypted with the public key cannot be decrypted with any other key except for its corresponding 

private key. The following Diagram illustrates the encryption process in the public key cryptography. 

 

 

 

 

 

 

 

 

Fig 4:  Encryption Process in the public key cryptography 
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Fig 5:  Decryption Process in the private key cryptography 

The public-key algorithm uses a one-way function to translate plain text to cipher text. Then, without the private 

key, it is very difficult for anyone (including the sender) to reverse the process (i.e., translate the cipher text 

back to plaintext). A one-way function is a function that is easy to apply, but extremely difficult to invert. The 

most common one-way function used in public-key cryptography involves factoring very large numbers. The 

idea is that it is relatively easy to multiply numbers, even large ones, with a computer; however, it is very 

difficult to factor large numbers. The only known algorithms basically have to do a sort of exhaustive 

BLAKErch (Does 2 go in to? Does 3? 4? 5? 6? and so on). With numbers 128 bits long, such a BLAKErch 

requires performing as many tests as there are particles in the universe. 

In a public-key cryptosystem, the private key is always linked mathematically to the public key. Therefore, it is 

always possible to attack a public-key system by deriving the private key from the public key. Typically, the 

defence against this is to make the problem of deriving the private key from the public key as difficult as 

possible. For instance, some public-key cryptosystems are designed such that deriving the private key from the 

public key requires the attacker to factor a large number, it this case it is computationally infeasible to perform 

the derivation. This is the idea behind the RSA public-key cryptosystem. Public-key cryptography is a 

cryptographic approach which involves the use of asymmetric key algorithms instead of or in addition to 

symmetric key algorithms. Unlike symmetric key algorithms, it does not require a secure initial exchange of one 

or more secret keys to both sender and receiver. The asymmetric key algorithms are used to create a 

mathematically related key pair: a secret private key and a published public key. Use of these keys allows 

protection of the authenticity of a message by creating a digital signature of a message using the private key, 

which can be verified using the public key. It also allows protection of the confidentiality and integrity of a 

message, by public key encryption, encrypting the message using the public key, which can only be decrypted 

using the private key. The most widely used public key cryptosystem is RSA. The RSA scheme is a block cipher 

in which the plaintext and cipher text are integers between 0 and n-1 for some n. 

 

III. RSA ALGORITHM 

 

It is based on a very simple number-theoretical idea, and yet it has been able to resist all cryptanalytic attacks. 

The idea is a clever use of the fact that, while it is easy to multiply two large primes, it is extremely difficult to 

factorize their product.  

Thus, the product can be publicized and used as the encryption key. The primes themselves cannot be recovered 

from the product and are used for decryption. There is no formal proof whatsoever that factorization is 
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intractable or is intractable in the special case needed for RSA, and that factorization is needed for the 

cryptanalysis of the RSA. 

RSA algorithm simply capitalizes on the fact that there is no efficient way to factor very large integers. The 

security of the whole algorithm relies on that fact. If someone comes up with an easy way of factoring a large 

number, then that’s the end of the RSA algorithm. Then any message encrypted with the RSA algorithm is no 

more secure. 

Briefly, the algorithm involves multiplying two large prime numbers (a prime number is a number divisible only 

by that number and 1) and through additional operations deriving a set of two numbers that constitutes the 

public key and another set that is the private key. Once the keys have been developed, the original prime 

numbers are no longer important and can be discarded. Both the public and the private keys are needed for 

encryption /decryption but only the owner of a private key ever needs to know it. Using the RSA system, the 

private key never needs to be sent across the Internet. 

The private key is used to decrypt text that has been encrypted with the public key. Thus, while a sending a 

message, it is easy to find out the public key (but not the private key) from a central administrator and message 

is encrypted using public key. While receiving it, the message is decrypted with the private key.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6:  RSA algorithm 

3.1 Features of Rsa 

It is the easiest to understand as well as the most popular to implement RSA obtains its security from the 

difficulty of factoring large numbers. The algorithm is patented in North America (although algorithms cannot 

be patented elsewhere in the world) this is a source of legal difficulties in using the scheme. 

 

3.2 Rsa Security 

The security of RSA algorithm depends on the ability of the hacker to factorise numbers. Newer faster and 

better methods for factoring numbers are constantly being devised. The current best for long numbers of the 

number field sieve. Prime number of a length that was unimaginable a mere decade ago are now factored easily. 

     P&Q (Two large prime numbers are choiced) 

N=P*Q 

Public key: E & private key:D 

Encryption CT=PT
e
 mod n. 

CT to receiver 

Decryption PT= CT
d
 mod n. 

http://whatis.techtarget.com/definition/0,,sid9_gci284011,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci212845,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci212830,00.html
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Obviously the larger the number is, the harder it is to fact and so the better the security of RSA.As theory and 

computers improve large and larger keys will have to be used. 

 

IV.  KEY GENERATION ALGORITHM 

 

1. Generate two large random primes, p and q, of approximately equal size such that their  product n = pq is of 

the required bit length, e.g. 1024 bits.  

2. Compute n = pq and (φ) phi = (p-1)(q-1). 

3. Choose an integer e, 1 < e < phi, such that gcd            (e, phi) = 1. 

4.  Compute the secret exponent d, 1 < d < phi, such that ed ≡ 1 (mod phi).  

5. The public key is (n, e) and the private key is (n, d). Keep all the values d, p, q and phi secret. 

 n is known as the modulus. 

 e is known as the public exponent or encryption exponent or just the exponent. 

 d is known as the secret exponent or decryption exponent. 

A.  ENCRYPTION 

Sender A does the following:- 

1. Obtains the recipient B's public key (n, e). 

2. Represents the plaintext message as a positive integer m 

3. Computes the cipher text c = m
e
 mod n. 

4. Sends the cipher text c to B. 

B.  DECRYPTION 

Recipient B does the following:-  

1. Uses his private key (n, d) to compute m = c
d
 mod n. 

2. Extracts the plaintext from the message representative m. 

C.  DIGITAL SIGNING 

Sender A does the following:-  

1. Represents this digest as an integer m between 0 and n-1.. 

2. Uses her private key (n, d) to compute the signature s = m
d
 mod n. 

3. Creates a message digest of the information to be sent. 

4. Sends this signature s to the recipient, B. 

D.  SIGNATURE VERIFICATION 

Recipient B does the following:-  

1. Uses sender A's public key (n, e) to compute integer v = s
e
 mod n. 

2. Extracts the message digest from this integer. 

3. Independently computes the message digest of the information that has been signed. 

4. If both message digests are identical, the signature is valid. 

E.  KEY LENGTH 

On considering the key length of an RSA key, with reference to the length of the modulus, n in bits. The 

minimum recommended key length for a secure RSA transmission is currently 1024 bits. A key length of 512 
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bits is now no longer considered secure, although cracking it is still not a trivial task for the likes of the user. 

The longer the information is needed to be kept secure, the longer the key one should use.  

F.  STEPS IN RSA 

 n = pq, where p and q are distinct primes. 

 phi, φ = (p-1)(q-1) 

 e < n such that gcd(e, phi)=1 

 d = e
-1

 mod phi. 

 c = m
e
 mod n, 1<m<n. 

 m = c
d
 mod n. 

 

V. MONTGOMERY MULTIPLIER 

 

For modular multiplication Montgomery's technique is chosen. Montgomery multiplication is defined as fol-

lows: 

      M O N T ( X , Y )  =  X Y R
- 1

   mod N  

For a word base b = 2°, R should be chosen such that R = 2r = (2°)' > N. There is a one-to-one correspondence 

between each element x G ZN and its Montgomery representation xR mod N. This Montgomery representation 

allows very efficient modular arithmetic especially for multiplication. Montgomery's method for multiplying 

two integers x and y (called N-residues) modulo N, avoids division by N which is the most expensive operation 

in hardware. The method requires conversion of x and y to an N-residue domain and conversion of the 

calculation result back to ZN. The procedure is as follows. To compute Z = xy mod N, one first has to compute 

the Montgomery multiplication of x and R2 mod N to get Z' = xR mod N. Mont(Z', y) gives the desired result. 

When computing the Montgomery product T = Mont(x, y) = xyR-1 mod N, the procedure shown  is performed. 

In the original notation of Montgomery after each multiplication a reduction was needed. The input had the 

restriction X, Y < N and the output T was bounded by T < 2N. As a consequence, if T > N , N must be 

subtracted so that the output can be used as input of the next multiplication. To avoid this subtraction a bound 

for R is known such that for inputs X,Y < 2N the output is also bounded by T < 2N. 

In  the need of avoiding reduction after each multiplication is addressed. In practice this means that the output of 

the multiplication can be directly used as an input of the next Montgomery multiplication. We want to find a 

bound on R such that with X,Y < 2N the output of the Montgomery multiplication T < 2N. Write R > kN, then: 

      NN
k

N
R

m

R

XY

R

mNXY
T 




4
 

where, m = (XY mod R)N' mod R [1]. 

Hence, T < 2N for k > 4, implying: 4N < R. We will use 4N < R = 2'+2, by taking a = 1 for simplicity and 

making the iteration starting from Step 2 execute I + 2 times. As the result of the decision for a, - N
-i
 mod 2a can 

be written as (2 - n0) - 1 mod 2. Because N is odd for RSA and an odd prime for ECC, n0 = 1 which results to N' 

= 1. We will use the Algorithm 2 for MMM which includes these improvements. 

Example: 

Montgomery Arithmetic:  
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Several modular multiplications are involved in RSA. The encryption formula is y=b^ª mod m 

The multiplication come modular operation is done at each single level and the immediate results are stored in 

temporary registers and the same steps are repeated till the exponent or index value exceeds. For example 

consider a number 2 with exponent value 5 and the final result is stored in the output register y. 

E.g. 2^5 mod 3 

A= (2x2) mod 3 

A= (Ax2) mod 3 

A= (Ax2) mod 3 

A= (Ax2) mod 3 

Output Y= A mod n the simulation output of implementing Montgomery multiplication for the example is 

obtained as below. By viewing the simulation output, timing analyzer, power analyzer and flow summary tool in 

Quartus II software. The area, power and time have been improved. 

 

VI. SIMULATION RESULTS 

 

 

Fig 7 Simulated Result of Key Generation 
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Fig 8 Simulated Result of Encryption and Decryption 

 

VII. COMPARISON CHART OF MODULO AND MONTGOMERY MULTIPLIERS 

 

PARAMETERS  

 

MODULO  

MULTIPLIER  

 

MONTGOMERY  

MULTIPLIER 

TOTAL NO. OF 

REGISTERS          

USED  

 

64  

 

20 

TOTAL  

POWER  

DISSIPATION  

 

37.70mw  

 

35.11mw  

 

DELAY  TIME  

 

150.692ns  

 

7.186ns  

 

 

VIII. CONCLUSION 

 

Area-power efficient modulo and Montgomery  multipliers employing RSA algorithm were proposed. RSA uses 

a variable size encryption block and a variable size key. The key-pair is derived from a very large number, n, 

that is the product of two prime numbers chosen according to special rules; these primes may be 100 or more 
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digits in length each, yielding an n with roughly twice as many digits as the prime factors. A cryptographic 

processor with public and private key pair generator and modulo multiplier based both encryptor and decryptor 

for text message was designed. The hardware design of RSA processor by employing Montgomery multiplier 

technique to reduce the execution delay time and the thermal power dissipation was also designed and the 

comparison results were shown. 
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