

504 | P a g e

LOSSLESS TEXT DATA COMPRESSION USING

MODIFIED HUFFMAN CODING

Harsimran Kaur
1
, Balkrishan Jindal

2

1
Research Scholar, Assistant Professor

2
, YCoE, GKC, Punjabi University, Talwandi Sabo

ABSTRACT

In this paper, a new method for data compression is proposed. Data Compression is a technique to increase the

storage capacity by eliminating redundancies that occur in text files. It converts a string of characters into a

new string which have the same data in small length. In the proposed method, dynamic Bit Reduction algorithm

and Huffman Coding is used to achieve better compression ratio and saving percentage as compared to the

existing method. The accuracy of the proposed method is 60-70%, while the accuracy of existing method is 40-

50%. The results of this study is quite promise.

Keywords: Data Compression, Data Compression Techniques, Lossless Text Data Compression.

I. INTRODUCTION

Data compression is a process by which a file (Text, Audio and Video) may be transformed into another file,

such that the original file may be fully recovered from the original file without any loss of actual information

[1]. This process may be useful if one wants to save the storage space. Fig 1.1 shows the compression and

decompression process over the network.

Fig 1.2 shows the compression methods, lossless data compression and lossy data compression. The lossless

data compression that is commonly used to transmit or archive text or binary files required to keep their

505 | P a g e

information intact at any time. Lossy data compression, which is widely used to compress image data files for

communication or archives purposes. Lossless data compression is further divided into Run-Length, Huffman,

Lempel Ziv algorithm and Transformation. Transformation is further divided into Fast Fourier Transform (FFT),

Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). Lossy data compression is divided

into Joint Photographic Experts Group (JPEG), Moving Picture Experts Group (MPEG) and MPEG Audio

Layer 3 (MP3).

II. RELATED WORK

Brar and Singh [1] described different basic lossless and lossy data compression techniques. A bit reduction

algorithm for compression of text data had been proposed by them. That was a simple compression and

decompression technique free from time complexity. Sharma et al. [4] described the Improved Dynamic Bit

Reduction Algorithm to compress and decompress the text data. They presented the results obtained by the

proposed system and compare the results with the existing data compression techniques.

Sidhu and Garg [3] described the improved dynamic bit reduction algorithm to compress and decompress the

text data based on lossless data compression approach. Various experiments had been conducted on different

datasets such as Random, Alphanumeric, Numeral and Special Characters dataset. Sharma [4] had analyzed

Huffman algorithm and compared it with other common compression techniques like Arithmetic, LZW and Run

Length Encoding. They concluded that arithmetic coding was very efficient for bits and reduced the file size

dramatically.

Porwal et al. [5] described the lossless data compression methodologies and compares their performance.

Huffman and arithmetic coding were compared according to their performances. The author had found that the

arithmetic encoding methodology was powerful as compared to Huffman encoding methodology.

Shanmugasundaram and Lourdusamy [6] described a survey of different lossless data compression algorithms.

They used Statistical compression technique and Dictionary based compression technique performed on text

data. Lossy algorithms achieve better compression than lossless algorithms, but lossy compression was limited

to audio, images and video, where some loss was acceptable.

Yellamma and Challa [7] described the data compression was most consideration thing of the recent world.

They had to compress a huge amount of data so as to carry from one place to other or in a storage format. The

proposed compression technique were improved the efficiency of compression on text. Huffman encoding

Algorithm was suitable for the given text. Aarti [8] had reviewed various techniques of lossless image

compression with different file formats and the need of compression. All the lossless image compression

techniques had been discussed by her, which gave better compression ratio.

Kodituwakku and Amarasinghe [9] described the comparison of a number of different lossless data compression

algorithms by considering the Shannon Fano algorithm. Btoush et al. [10] described the different data

compression algorithms of text files, LZW, Huffman, Fixed-length code and Huffman after using Fixed-length

code. They compared these algorithms on different text files of different sizes in terms of compression scales of

size, ratio, time and entropy.

Katugampola [11] described how ternary representation of numbers can be utilized to compress text data with

fixed-symbol-length coding techniques. He used binary map for ternary digits. He found a way to minimize the

506 | P a g e

length of the bits string which was only possible in ternary representation that reduced the length of the code.

Kapoor and Chopra [12] described the several key issues to the dictionary based LZW algorithm. They would

like to improve LZW algorithm in future which definitely get good results like, better compression ratio, time

taken for searching in the dictionary for pattern matching. They also discussed that the LZ algorithm had various

issues regarding its performance and internal structure.

III. PROPOSED METHOD

The proposed improved Huffman Coding algorithm works in two phases to compress the text data specially.

This method also improved the numeric data and symbolic data. In the first phase, data is compressed with the

help of dynamic bit reduction technique and in second phase, Huffman coding is used to compress the data

further to produce the final output. In the First phase, when user enters an input data, the method will find out

the occurrence of number of unique symbols in the input text string and then numeric code will be assigned to

these unique symbols. For each numeric code, corresponding binary codes will be generated dynamically to

obtain the compressed binary output. The performance of the proposed method is measured using parameters

such as Compression Ratio and Saving Percentage. Fig. 1.3 shows the data compression process of the proposed

method step by step.

3.1 Compression Ratio

It is the ratio between the result of the compressed file and the result of the source file [9] [10].

Compression Ratio = (After Compression / Before Compression)*100 (1.1)

3.2 Saving Percentage

 Saving Percentage calculates the shrinkage of the source file as a percentage [9].

Saving Percentage = {(Before Compression - After Compression) / Before Compression}*100 (1.2)

507 | P a g e

IV. PROPOSED DATA COMPRESSION ALGORITHM

Step I: Input the text data to be compressed.

Step II: Find the number of unique words in the input text data and assign the symbols that

 are not in the input.

Step III: Now find the unique characters from the step II.

Step IV: Find the number of bits required to assign bit code to the characters.

Step V: Assign the numeric code to the unique characters found in the step II according to the number of bits

calculated in step IV.

Step VI: Starting from first symbol in the input find the binary code corresponding to that symbols from

assigned numerical codes and concatenate them to obtain binary output.

Step VII: Add number of 0’s in MSB of Binary output until it is divisible by 8.

Step VIII: Generate the ASCII code for every 8 bits for the binary output obtained in step VI and concatenate

them to create input for second phase.

 [Step VI is the result of dynamic bit Reduction method in ASCII format]

508 | P a g e

Step IX: Compressed data is obtained.

V. PROPOSED DATA DECOMPRESSION ALGORITHM

Step I: Input the Final output from compressed phase.

Step II: Calculate the binary code corresponding to the ASCII values of input obtained in

 Step I.

Step III: Remove the extra bits from the binary output added in the compression phase.

Step IV: Calculate the numeric code for every 8 bits obtained in the Step IV.

Step V: For every numeric value obtained in the step V, find the corresponding symbol to

 get the final decompressed data.

Step VI: Concatenate the data symbols obtained in the step VI and obtain the final output.

Step VII: Display the final result to the user.

VI. ILLUSTRATION

Let the input string for compression: yadavindra_college

Then, find the unique characters and calculate the length to represent these characters as follows:

Fig. 1.4 data decompression process of the proposed method

Start

Input Compressed Text

Obtain the decompressed text in ASCII format

Calculate the binary code corresponding to ASCII values

Remove the extra bits added during compression from binary output

Calculate the corresponding numeric codes for binary output

Get the corresponding symbol for each numeric value

Concatenate the data symbols and obtain final output

Display the decompressed original text to user

End

509 | P a g e

y=0, a=1, d=2, v=3, i=4, n=5, r=6, _=7, c=8, o=9, l=10, e=11 and g=12

After calculating the length, assign binary numbers to the input string as follows:

y=0000, a=0001, d=0010, v=0011, i=0010, n=0101, r=0110, _=0111, c=1000, o=1001, l=1010, e=1011 and

g=1100

The output of the input string is as follows:

0000 0001 0010 0001 0011 0100 0101 0010 0110 0001 0111 1000 1001 1010 1010 1011 1100 1011

Above illustration shows that the total number of bits to represent the input string are 72.

VII. RESULTS

In this section, the results of the proposed method is presented and discussed. The algorithm has been

implemented on c# platform with Visual Studio 2008 as an Integrated Development Environment (IDE). The

proposed method is evaluated using different size of data bytes in terms of compression ratio & Saving

Percentage and compared with the existing techniques i.e. Bit Reduction algorithm and Huffman coding. Table

1.1 demonstrates the analysis of proposed method using different size of data files and compared with existing

methods.

Table 1.1 Comparison of compression ratio and saving percentage of the proposed

method and the existing method[13]

Input (in

bytes)

Output (in bytes) Compression Ratio (in %) Saving Percentage

 Existing

system

Proposed

Method

Existing

system

Proposed

Method

Existing

system

Proposed

Method

100 51 36 51 36 49 64

200 107 77 53.5 38.5 46.5 61.5

300 167 123 55.6 41 44.3 59

400 229 191 57.2 47.7 42.7 52.2

500 288 243 57.6 48.6 42.4 51.4

1000 593 501 59.3 50.1 40.7 49.9

2000 1193 1005 59.6 50.2 40.3 49.7

3000 1790 1513 59.6 50.4 40.3 49.5

4000 2396 2024 59.9 50.6 40.1 49.4

5000 2975 2546 59.5 50.9 40.5 49.0

10000 5994 5746 59.9 57.4 40.0 42.5

510 | P a g e

Fig. 1.5 shows the data compression for existing method by considering 4000 bytes as input and 2396 bytes are

output after data compression. Fig. 1.6 shows the data compression process of the proposed method. by

considering 4000 bytes as input and 2024 bytes are output after data compression.

Fig. 1.5 input and output of the existing system

511 | P a g e

VIII. CONCLUSION

In this study, a dynamic Bit Reduction algorithm and Huffman Coding is used to improve the compression ratio

and saving percentage. Different size of data files is use d to evaluate the performance of the proposed method.

The results obtained by the proposed method are compared with the existing data compression techniques like

Bit Reduction and Huffman Coding in terms of compression ratio and saving percentage.

REFERENCES

[1] R. Brar, and B. Singh, A Survey on Different Compression Techniques and Bit Reduction Algorithm for

Compression of Text/Lossless Data, International Journal of Advanced Research in Computer Science

and Software Engineering, 3(3), 2013, 579-582.

Fig. 1.6 input and output of the proposed method

512 | P a g e

[2] N. Sharma et al. An Improved Dynamic Bit Reduction Algorithm for Lossless Text Data Compression,

International Journal of Advanced Research in Computer Science and Software Engineering, 4(7), 2014,

1023-1029.

[3] A.S. Sidhu, and M. Garg, Research Paper on Text Data Compression Algorithm using Hybrid Approach,

International Journal of Computer Science and Mobile Computing, 3(12), 2014, 1-10.

[4] A.S. Sidhu, and E.M. Garg, An Advanced Text Encryption & Compression System Based on ASCII

Values & Arithmetic Encoding to Improve Data Security, International Journal of Computer Science and

Mobile Computing, 3(10), 2014,45-51.

[5] S. Porwal, Y. Chaudhary, J. Joshi, and M. Jain, Data Compression Methodologies for Lossless Data and

Comparison between Algorithms, International Journal of Engineering Science and Innovative

Technology, 2(2), 2013, 142-147.

[6] S. Shanmugasundaram and R. Lourdusamy, a Comparative Study of Text Compression Algorithms,

International Journal of Wisdom Based Computing, 1(3), 2011, 68-76.

[7] P. Yellamma, and N. Challa, Performance Analysis of Different Data Compression Techniques on Text

File, International Journal of Engineering Research & Technology, 1(8), 2012, 1-6.

[8] Aarti. A Review on Lossless Image Compression Techniques, International Journal of Advanced

Research in Computer Science and Software Engineering, 3(11), 2013, 1483-1495.

[9] S.R. Kodituwakku, and U. S. Amarasinghe, Comparison of Lossless Data Compression Algorithms For

Text Data, Indian Journal of Computer Science and Engineering, l1(4), 416-425.

[10] M.H. Btoush, et al., Observations on Compressing Text Files of Varying Length, Proc. 5
th

 IEEE

International Conf. on Information Technology: New Generations, 2008, 224-228.

[11] U. Katugampola, A New Technique for Text Data Compression, Proc. IEEE International Symposium on

Computer, Consumer and Control, 2012, 405-409.

[12] S. Kapoor, and A. Chopra, A Review of Lempel Ziv Compression Techniques, International Journal of

Computer science and Telecommunications, 4(2), 2013, 246-248.

[13] A. Kaur, and N. Sethi, Approach for Lossless Text data Compression using Advanced Bit Reduction

Algorithm, International Journal of Advanced Research in Computer Science and Software Engineering,

5(7), 2013, 1172-1176.

[14] A. Moffat, et al., Static Compression for Dynamic Texts, IEEE Computer, 1994, 126-135.

[15] J. Ziv, and A. Lempel, a Universal Algorithm for Sequential Data Compression, Proc. IEEE Transactions

on Information Theory, 23(3), 1977, 337-343.

[16] M. Burtscher, et al., The VPC Trace-Compression Algorithms, Proc. IEEE Transaction on Computers,

54(11), 2005, 1329-1344.

[17] M.Z. Zia, et al., Two-Level Dictionary-Based Text Compression Scheme, Proc. 11
th

 IEEE International

Conf. on Computer and Information Technology, 2008, 13-18.

