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ABSTRACT 

Biomedical signals are commonly used as a convenient solution of Human Computer Interface (HCI) for the 

disabled persons. Myoelectric control system is the fundamental component of modern prostheses, which uses 

the myoelectric signals from a human being’s muscles for prosthesis controls.  For this purpose, surface 

electromyogram (SEMG) data collected from thirty participants using eight electrodes located on the human 

forearm is used. Various feature sets were extracted and projected in a manner that ensured maximum 

separation between different movements of hand and then fed to the four different classifiers. We have used 

Sparse Principal component analysis as feature projection which very profoundly discriminated the feature sets. 

We have used majority voting algorithm in post processing approach to maximize the probability of correct 

classification of the myoelectric data for different movements of forearms. Practical results and statistical tests 

proved the viability of the proposed approach with an average classification accuracy > 98% for forearm 

movements. The focus of this work is to optimize the configuration of the classification scheme. The SVM 

ensemble based limb motion classification system demonstrates exceptional classification accuracy and results 

in a robust method of motion classification with low computational load. 

 

Keywords: Discriminant Locality Preserving Projections (DLPP), Myoelectric Control, Myoelectric 

Signal (MES), Pattern Recognition, Prosthesis, Sparse Principal Component Analysis (SPCA). 

 

I. INTRODUCTION 

 

Surface electromyogram (SEMG) signal is one of the most important bio-signal. The use of SEMG signal is 

simple, fast and convenient, hence widely studied and applied in clinic. It is generated by muscular contraction 

and can be recorded using surface electrodes. The noninvasive surface electromyogram (SEMG) signal provides 

information about neuromuscular activity and has become an important and effective control input for powered 

prostheses from last 40 years [1].  

The loss of the human upper-limb, limits the ability of amputees to interact with the real world.  The life of the 

amputees can be enhanced by restoring their ability to interact with the outer world. This can be made possible 

by using powered upper-limb prostheses. These prostheses derive their control command from myoelectric 

signals generated by the human muscles [2]. 
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Many researchers have demonstrated the feasibility of myoelectric control for various feature sets and 

classification methods [3-6].  The surface EMG signals have been successfully utilized in decoding the intended 

forearm movements.  

The myoelectric signals acquired from healthy subjects can be considered as an emulation of the amputee’s 

command signals extending from the shoulder and intended for various hand movements.  

In the realization of myoelectric control, the key problem is to accurately recognize the user’s intent. To classify 

the acquired surface myoelectric signals into one of a predefined set of forearm movements, pattern recognition 

of the myoelectric signal is used.  

The concept of employing pattern recognition for myoelectric signal control schemes was first developed in late 

1960s or early 1970s [7, 8]. First successful pattern recognition based approach offering real time performance 

and high accuracy was developed by Hudgins in 1993.  

The paper is constituted as follows: Section 2 describes the data collection procedure, the feature extraction, 

feature set reduction, classification and post processing. Section 3 and section 4 presents the experimental 

results and discussion respectively and finally, conclusions are drawn in Section 5. 

 

II. METHODOLOGY 

 

We propose an EMG based forearm movement system that employs eight EMG electrodes placed on the surface 

of the human forearm. The goal is to employ effective feature reduction techniques and classifiers to increase 

the classification accuracy for identification of seven classes of forearm movements.  

The block diagram of the proposed system is shown in Fig.1. Raw surface EMG signals were preprocessed and 

feature sets were extracted. The extracted features sets were reduced in dimensionality using SPCA OLDA, 

DLPP and then suitable classifiers SVM ensemble, LDA, MLP and MkKNN were utilized to recognize the 

signals from different classes of the forearm movements. To eliminate spurious misclassification and to enhance 

the classification accuracy majority voting was used. 

  

 

 

Recorded                                     Time and Frequency domains    SPCA, OLDA    SVM Ensemble             Class                                                                                                                                                                   

Signal                                              Time-frequency domain            DLPP             MkNN, LDA,MLP          Label                                                                                         

                        

Figure1:  Block diagram of the Myoelectric signal classification system for prosthesis control 

 

2.1 Data Collection 

The data utilized in this paper is same that is used in [9]. The surface electromyogram signals collected from 

thirty subjects (eighteen females and twelve males). Duo-trode Ag-AgCl eight electrodes were placed on seven 

sites of the forearm and on the bicep for collecting eight channels of myoelectric data. An Ag-AgCl Red-Dot 

electrode was placed on the wrist as common ground reference. The Fig.2 shows the placement of electrodes on 

the forearm. The signals were amplified with a gain of 1000 and BW of 1 Hz to 1 KHz to be sampled at 3KHz.  
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Figure 2: Electrodes placement on the right forearm 

Seven distinct forearm movements: hand open (HO), hand close (HC), supination (S), pronation (P), wrist 

flexion (WF), wrist extension (WE) and rest (R) were recorded. The Fig. 3 shows the six movements of the 

forearm. In the original research paper [10], data from the fourth session was used. For the same reason, we 

have also used data from the fourth session only. The data from the first four trials were used for training data 

and the remaining two trials for testing.  

 

Figure 3: Different forearm movement classes  

 

2.2 Feature extraction 

Due to the stochastic nature of the EMG, an instantaneous sample contains relatively little information about the 

overall muscle activity, hence features should be chosen very cautiously. They are used to model and analyze 

raw electromyogram signals, so success of any classification problem depends almost entirely on the selection 

and extraction of features. Features were computed from the preprocessed myoelectric signal in time, frequency 

and time-frequency domain using a sliding window approach.  

The feature set should be capable to capture the characteristics or properties of the MES for different limb 

motions. Consideration of the feature set must involve the computational load required; a tradeoff in accuracy 

and computational complexity does exist.  

Two sets of features were extracted: first set (TFD) consisted of fifth order time varying autoregressive 

coefficients, root mean square, mean absolute value, mean and median frequency and Short time Fourier 

transform (STFT). The second feature set (WT) consisted of mean of the square values of the wavelet 

coefficients each of DWT using Daubechis wavelet family and WPT using Symmlet wavelet family with five 

levels of decomposition.  

Overlapping window of 256ms was analyzed which were spaced 128ms and 32ms apart for training data and 

testing data respectively. To improve the accuracy, the transitional data 256ms before or after a change in limb 

motion was removed from the training set.  

 

 

2.3 Feature Reduction 



 

484 | P a g e  

Dimensionality reduction is an important process before classification is performed. LDA is a supervised, 

nonlinear dimensionality reduction technique. We have employed orthogonal LDA (OLDA), which computes a 

set of orthogonal discriminant vectors via the simultaneous diagonalization of the scatter matrices. 

The application of OLDA is justified by the high variance nature of the myoelectric signal which causes the 

information to be liberally dispersed amongst the original feature set extracted from the EMG signals. Feature 

projection methods can consolidate such information more effectively than feature selection based methods in 

EMG signals classification problems [11]. Also OLDA has low computational cost compared to nonlinear 

projection methods. 

2.3.1 Sparse PCA (SPCA) 

Principal component analysis (PCA) is commonly used in data processing and dimensionality reduction. In 

PCA, it is difficult to interpret the results as each principal component is formed by linearly combining all the 

original variables. The fact that PCA does not consider the class label in the projection process limits the 

performance of PCA when compared to other projection methods. Sparse Permanent component analysis 

(SPCA) is considered as a combination of feature selection and projection. SPCA provides a means of 

unsupervised dimensionality reduction, as no class membership qualifies the data when specifying the 

eigenvectors of maximum variance [12].  

Sparse principal component analysis (SPCA) uses the lasso (elastic net) to produce modified principal 

components with sparse loadings. It allows flexible control on the sparse structure of the resulting loadings. As a 

principled procedure, it is computationally efficient, has high explained variance and ability in identifying 

important variables. It maximizes the variance explained by a linear combination of the input variables, but 

simultaneously constrains the number of nonzero coefficients. We have used it to find a subspace whose basis 

vectors correspond to the maximum-variance directions in the original space [13].  

 

2.4 Classification 

Myoelectric signal classification for prosthetic control is a difficult problem, as the myoelectric signal is random 

in nature due to the complex strategies of motor unit firing and recruitment inherent in neuromuscular control 

strategies. A suitable classifier must be accurate enough to generalize well the novel data and capable of being 

optimized to suit the unique patterns generated by individual users. It is not necessary that it should be capable 

of being trained in a reasonable amount of time [14].  

The LDA and the MLP are easily implemented and well understood representatives of statistical and neural 

classifiers respectively. Although some classifiers demonstrate obvious advantages over others but is the feature 

set that most dramatically affects the classification performance, and this is our main focus in this work.  

2.4.1 SVM Ensemble 

A SVM is an intelligent learning method and is the core of classification in myoelectric control. It has high 

accuracy, robust performance, and low computational load but suitable for two-class classification. In Ensemble 

learning multiple learners are trained to solve the same problem. It tries to construct a set of hypotheses and 

combine them to use. Since an ensemble contains a number of base learners, its generalization ability is much 

stronger than that of base learners.  

In this paper, we have used an ensemble algorithm based on bagging [15] and culture algorithm [16].  
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2.5 Post Processing 

With the overlapped windowing scheme very dense decision stream is produced and decisions are made more 

frequently than the required response time of prosthesis. Post processing techniques are usually utilized after 

classification to prevent overwhelming the prosthetic controller with varying classification decisions. In a MV 

scheme, an acceptable delay of 256 ms and an overlapped windowing increment in the test session is used. The 

number of decisions used in the majority vote is determined by the processing time Tprocess (time consumed 

during feature extraction, projection and classification) and the acceptable delay Tdelay (the response time of the 

control system). We can use the previous decisions, the current decision and the future decisions to form the 

MV. For a given decision point di, the majority vote decision dmv includes the previous m decisions and may 

also include the future m decisions (with m satisfying the inequality of m×Tprocess≤ Tdelay [17]. The value of dmv 

is simply the class label with the greatest number of occurrences in the 2m+1 decisions. 

 

III. RESULTS 

 

Data from the first two trials as training set, trials 3 and 4 for validation and for testing trials 5 and 6. 

Consequently, the testing scheme is different from the one used in [10] which utilized the 4 trials (trials 3 to 6) 

for testing. The three way data split is so that the chosen features do not cause an over-fitting in the results and 

also the system can work well with future unseen data.  

The performance of features projected with dimensionality reduction tools SPCA, OLDA, DLPP will be utilized 

for computing the classification accuracy. The preferred number of features is equal to 30 for TFD and WT 

features sets. Classification is performed using a LDA and SVM ensemble classifiers. The classification 

accuracy results from all the thirty subjects for were recorded and the average classification accuracy with one 

standard deviation as dispersion bars are shown in Fig. 4 and Fig. 5 for the validation and the testing sets. 

Applying majority vote in post processing step achieved an enhancement in the EMG classification accuracy of 

about 2%. Further, the transitional data between classes is removed as the system is in an undetermined state 

between the contractions. The results shown below are given first without a majority vote (MV), followed by 

results with the transitional data between classes removed (NT- no transitional data), and lastly with the 

application of majority vote and the removal of the transitional data (MV +NT). 
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Figure 4: Classification accuracy averaged across thirty subjects for LDA classifier 

            

            

Figure 5: Classification accuracy averaged across thirty subjects for SVM ensemble Classifier 

After analyzing the results, it was observed that the hit rates obtained by SPCA method outperformed OLDA 

and the OLDA in turn outperformed DLPP. OLDA projects the data into directions that maximize the ratio of 

the between scatter matrix to the within scatter matrix and simultaneous diagonalization of the scatter matrices 

resulting into the orthogonal discriminant vectors. Thus the performance of OLDA is stable when the number of 

extracted features is not too small. The SPCA results into a very powerful combination of features.  

A statistical comparison between the performances of the various dimensionality reduction techniques was 

found to validate our results. The results proved the performance of SPCA against other techniques. The Table 1 

and Table 2 show the statistical test results. 
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TABLE 1 Validation and testing accuracies averaged across thirty subjects (using MV+NT) 

Feature set Data Division SPCA OLDA DLPP 

TFD Validation 97.1777 95.9396 88.3277 

Testing 94.8502 94.4126 87.9324 

WT Validation 98.4138 97.1954 91.1828 

Testing 96.2501 95.3333 90.0115 

TABLE 2 Geometric mean error ratios of SPCA against different methods 

Feature set Data Division SPCA ~ OLDA SPCA ~ DLPP 

TFD Validation 0.8298 0.2826 

Testing 0.9117 0.3807 

WT Validation 0.8008 0.3305 

Testing 0.8996 0.4138 

Further, in order to provide a thorough validation with existing techniques of dimensionality reduction, the 

confusion matrix for all the subjects was computed for both the feature sets and for the two classifiers LDA   

(used by the original researcher) and SVM ensemble. A plot of the diagonal values of the class wise 

classification accuracy matrices for both the validation and testing with TFD and the WT features is shown in 

Fig. 6 and Fig. 7. The figures indicate SPCA achieved better performance than OLDA and that both SPCA and 

OLDA in turn clearly outperformed DLPP. 
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(a) Validation Accuracy using TFD features            (b) Testing Accuracy using TFD features 
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(c) Validation Accuracy using WT features   (d) Testing Accuracy using WT features 

Figure 6: Diagonal values of the confusion matrices achieved for LDA classifier 

HO HC S P WF WE R
84

86

88

90

92

94

96

98

100

Classes

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 %

 

 

SPCA

OLDA

DLPP

       

HO HC S P WF WE R
84

86

88

90

92

94

96

98

100

Classes

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 %

 

 

SPCA

OLDA

DLPP

                 

(a) Validation Accuracy using TFD features                  (b) Testing Accuracy using TFD features 
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(c) Validation Accuracy using WT features     (d) Testing Accuracy using WT features 

Figure 7: Diagonal values of the confusion matrices achieved for SVM ensemble classifier 

These results show an enhancement by slightly more than 2% on the testing results achieved by using OLDA 

and more than 6% on the testing results achieved by using DLPP. In addition, the WT features achieved higher 

accuracies than the simple TFD features. But seeing the results from the computational cost, the performance of 

the system with the TFD features is highly recognized. 



 

489 | P a g e  

When working with the six trials of session four, it may be assumed that there may be a temporal development 

of the EMG signal due to the training and fatigue. Thus a random combination of trials for training, validation 

and testing was used to nullify the assumption. Hence, another set of experiments were conducted with a 

random combination of trials utilized each time. The results are shown in Table 3. This table presents a set of 

five experiments using the WT features as better results were achieved with WT features. The Table 3 clearly 

indicates that the performance of SPCA was better than that of other methods within all experiments with 

different data divisions. 

TABLE 3 Validation and Testing Accuracy Results for Various Segments of the Datasets  

Experiments Data divisions Trials SPCA OLDA DLPP 

1 Validation  T1 & T2 99.4988 97.9324 93.3333 

Testing T3 & T5  98.3348 96.9196 92.4126 

2 Validation  T1,T4 & T6 97.9842 95.8057 91.8482 

Testing T2 & T3  97.1777 94.1204 91.1828 

3 Validation  T1  96.2501 93.8567 90.4126 

Testing T2, T3, & T5  95.7818 93.0115 89.4499 

4 Validation  T6 94.9324 92.5172 88.8008 

Testing T3 & T4 94.1182 91.9842 88.1158 

5 Validation  T3 & T4 93.3162 91.1019 87.4077 

Testing  T6  92.2017 90.2116 87.0602 

 

In accordance with all achieved results, the SPCA method proved to be successful in achieving better 

performance than any other feature projection techniques. 

To prove the efficacy of SPCA on large datasets we obtained the classification accuracy using all the classifiers: 

SVM ensemble comprising of eight Linear SVMs with adaboosting, LDA classifier (used by the original 

researcher), MkNN classifier with number of neighbors k=5 and MLP with seven nodes in the hidden layer. The 

features extracted were averaged on the number of subjects and channels.  After going through 10 numbers of 

iterations, the average classification accuracy was obtained as a function of the feature vector dimensionality 

with SPCA.  Fig. 8 shows the classification accuracy for various classifiers with SPCA. Inspite of the fact that 

PCA is an unsupervised feature reduction method and the feature projection is simply based on variance, but 

sparsity in the SPCA makes it more viable and the classification accuracy upto 97.13 % with SVM ensemble 

classifier and 95.12% with LDA classifier which is an improvement over the classification accuracy 92.54% 

obtained by the original researcher with LDA classifier and ULDA.  



 

490 | P a g e  

0 5 10 15 20 25 30 35
50

55

60

65

70

75

80

85

90

95

100

Number of features

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 P

e
rc

e
n
ta

g
e

Average Classification Accuracy with SPCA

 

 

 LDA

 SVM ensemble

MLP

 MkNN

  

Figure 8: Classification accuracy as a function of SPCA 

As the number of features per channel increased irrespective of the type of features, the accuracy increased. An 

experiment was carried out in order to investigate that to which extent classification performance can be 

improved with additional number of channels. The response was averaged across all subjects, by empirical 

analysis it was observed that more numbers of channels do not profoundly affect the classifier performance. 

Fig.9 shows five numbers of channels with eight numbers of features per channel were sufficient, after that the 

performance decreased. Also the number of channels depended on the number of features per channel. We 

proved that as the number of features per channel is less than more number of channels are required so that there 

is sufficient amount of information for classification task. The SVM ensemble gave the best result with an 

accuracy greater than 98%. 
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Figure 9:  Classification accuracy with number of features per channel 

The effect of different length of windows of myoelectric signals was computed against the achieved 

classification accuracies. The window lengths taken into consideration were 128, 192, 256, 320ms. Four 

different classifiers were utilized to demonstrate the effectiveness of the projected features that are mutually 

uncorrelated. The classification accuracy was greater than 98% for 256ms window length with SPCA and SVM 

ensemble classifier. Larger length of window was not effective. Smaller windows degraded the performance. 

The performance of LDA was comparable to SVM. With no majority voting 128ms analysis window provided 

the best combinations of computational and classification accuracy. 
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Figure 10: Classification accuracy for 256 ms window for different classifiers 

 

IV. DISCUSSION 

 

We have introduced new techniques SPCA as dimensionality reduction and SVM ensemble as classifiers for 

non invasive myoelectric signal classification or pattern recognition. The performance of SVM ensemble and 

LDA classifier was smoothed by majority voting, but SVM ensemble outperformed LDA for both TFD and WT 

features sets.  In SPCA, the covariance structure was removed, by projecting the feature sets onto the 

orthonormal axes of maximum variance. In the original feature sets, the information was liberally dispersed; 

therefore, SPCA showed ability to consolidate this information much effectively than other feature selection 

methods. SPCA appears to effectively accommodate these effects. The improvement that SPCA offers to TFD 

features is not as pronounced as to the WT sets, as the original dimensionality is relatively low.  

With the increase in dimensionality of the feature set, the degree of nonlinearity between class boundaries must 

diminish. In the high dimensional feature space of TFRs, a significant degree of linear dependency exists. The 

SPCA preserves the linearity that exists between classes while projecting the TFR coefficients onto a relatively 

low dimensional space. The fact that the SPCA-projected TFR features (WT) have reasonably linear class 

boundaries and that they have relatively low dimension diminishes the advantage of LDA may have over SVM 

ensemble.  

With different data segments also we proved the superiority of SPCA. But it was also shown that the 

performance of OLDA was not far behind the SPCA. The performance of DLPP is a little bit low than the 

OLDA and this is because of the large sample size. The performance of MLP can be made comparable to LDA 

with appropriate number of hidden layer nodes and properly trained. For a given subject if the size of the MLP 

is inappropriate, the network may be over trained or undertrained and will reduce the generalization 

performance of the MLP. The LDA does not learn from its architecture or training algorithm being 

unsupervised, even then it consistently performs very well. Thus we proved that the performance of MLP is not 

far behind the LDA classifier as the number of features increased. We also proved that large number of channels 

are not required if suitable number of features and proper combination of channels are selected to achieve the 
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highest classification accuracy. The result indicated that the combinations of the eight features and using SVM 

ensemble as a classifier provide a suitable SEMG pattern identifier in recognizing the forearm movement. Based 

on the level of complexity and rate of correctness, the proposed analytical system proves to be superior. 

Also the classification accuracy varies with the length of window a proper length of the window is desired. We 

saw that with 256ms accuracy achieved was highest when the decision of SVM ensemble classifier was 

smoothed by majority voting.  The accuracy achieved was highest for the response time less than 300ms delay. 

The performance of MkNN classifier was below the LDA classifier due to the large sample size. 

   

V. CONCLUSION 

 

The primary goal of this paper was to compare the pattern recognition classification accuracies and to explore 

the pattern recognition algorithms which can be utilized within the prosthesis device controllers. These 

intelligent pattern recognition models will enhance the life of amputees and help them to restore their ability of 

interacting with the outer world. 

The classification of myoelectric signal depended on the domains from which features were extracted. The 

classifier exhibited very good accuracy with TFRs features but the way in which feature sets were projected 

mattered most. The classification accuracy was greater than 98% with five channels and it started deteriorating 

as more number of channels was introduced. We have introduced a new algorithm SPCA for feature reduction 

of myoelectric signals and we saw in our work that the performance of SPCA was remarkable. In our work, in 

place of using single LSVM like other researchers, we have used an ensemble of them. The individual SVMs 

were aggregated to make a collective decision using majority voting which outperformed the other classifiers. 

The highest accuracy was obtained with WT feature sets.  
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