

342 | P a g e

IMAGE PROCESSING SERVICES OVER NETWORKS

Deepika Pahuja

Assistant Professor, DAVIM

ABSTRACT

Image Processing can be used for distributed environment in order to provide image processing services over

integrated teleradiology services networks for transmission of radiological patient images such as X-rays, CTS

and MRI’s. Digital image processing over diffused networks integrates existing and new image processing

software and leads to sophisticated execution scheduling mechanisms for the efficient management of

computational resources within a disperse environment. It can also be extended to provide various added-value

services, such as retrieving and managing image processing software modules, as well as advanced charging

procedures based on quality of service. Disseminated Image processing can be viewed as the natural evolution

of the legacy field of medical image processing providing a service over the emergent health care over wireless

networks with efficiently conveying of information over vast networks..

I. INTRODUCTION

In past few years, advancement in information technology and telecommunications have acted as catalysts for

significant developments in the sector of health care. The advancement in technology had a particularly strong

influence in the field of medical imaging, where film radiographic techniques are gradually being replaced by

digital imaging techniques using matrix, and this has provided a drive to the development of integrated hospital

information systems and integrated teleradiology services networks which support the digital transmission,

storage, retrieval, analysis, and interpretation of distributed multimedia patient records [1]. One of the many

added-value services that can be provided over an integrated teleradiology services network in order to access

high-performance computing facilities for executing intensive image analysis and visualisation tasks

computationally [2]. Recently image processing tools in the market (IP)can fulfill particular needs of different

end user groups. They provide either a pool of user friendly software with embedded API‟s which are ready to

used by new in IP area, or offers programmer‟s libraries and visual language tools for the specialised IP

researcher and developer,. But still, we lack the common framework that will integrate all prior efforts and

developments in the field and at the same time provide added-value features that support and essential need

what we call a „service‟.

In the case of image processing, the major features which are required: computational resource management and

intelligent execution scheduling; intelligent and customisable mechanisms for the description, management, and

retrieval of image processing software modules; mechanisms for the “plug-and-play” integration of already

existing various different software modules; easy to access and transparency in terms of using software,

hardware, and network technologies; the sophisticated charging mechanisms based on quality of service; and,

methods for the integration with other services available within an integrated health telematics network. In this

paper we present the architecture of Distributed Image Processing Environment, a novel distributed environment

343 | P a g e

for image processing services. It is based on a distributed, anonmsly, co-operating agent architecture [3]. It is

designed so that it can be modular, scaleable and extensible, and it can be readily implemented on different

hardware and software platforms, and over differently designed networks.

II. ARCHITECTURE

DIPE consists of a functional core which includes the stable disperse execution of IP algorithms, and

which can be extended for supporting other added-value services such as macros, resource

management, algorithm retrieval, charging, etc. Now, we describe the functional core of the system

and discuss the mechanisms and notions employed to allow integration of third party IP algorithms

and the development of new IP software. Finally, we describe the functional extensions of the core

which supports macro execution and resource management. DIPE has been developed to support

distributed medical imaging processing, an added-value service which is used for transmission of

radiological patient images like CTS within the integrated regional health telematics network,

currently under development by the Institute of Computer Science (ICS),Foundation for Research and

Technology - Hellas (FORTH), on the island of Crete [4].2. The architecture and implementation is

depicted in figure 1 which shows the communication within distributed systems at diverse places

Figure 1 Communication within Diverse Systems

The main part of the system composed of several communicating components: user applications, execution

agents, pools of IP algorithms, and management agents. The management agent is the central element whose

main purpose is to realise the network of individual modules (applications and execution agents) and initialise

the communication among them. However, the main body of messages is communicated directly among the

individual modules. The local cluster can be further expanded through a network of management agents, within

the same or even different organisations. Thus, the management agent ensures the scaleability of the

environment, a basic requirement of an integrated teleradiology services network [1]. Additionally, the

management agent authenticates users and provides unique image ids by using standard digital signature

technology.

344 | P a g e

The execution agent is responsible for the execution of a specific algorithm. It receives the requests for

execution through the management agent and creates a communication link with the requesting application in

order to receive further information and input data required for the execution (Figure 1). After this point, this

agent can proceed autonomously to the execution of the algorithm. It stores input data into a local cache area

and executes the requested algorithm. Output generated through the execution of the algorithm is sent back to

the agent. The execution agent is responsible to forward this output to the requesting application. In case there is

a network failure or the requesting application is not running any longer, the agent keeps the results of the

execution in temporary storage for delivery upon request. This ensures persistent algorithm execution

and enhances the robustness of the system. The user application is the front end of the system and consists

primarily of a customised graphical user interface. A virtual temporary storage management module ensures that

the application can handle synchronously a considerable number of large datasets. An important feature of the

user application is that it incorporates certain image processing algorithms that require real-time response, and

thus it is not sensible to redirect their execution to an agent or over the network. These include routines

necessary for image visualisation (e.g., zoom, focus, resize, contrast adjustment, etc.), as well as certain

algorithms for local, real-time image processing. Finally, the graphical user interface provides toolkits that

support the various functionalities of the environment (algorithm insertion, monitoring of the system‟s status,

resource management, macro composition and execution, etc.).

A typical screen of the application is shown in Figure 2.

Figure 2

The basic requirement that distributed image processing is readily implemented on various operating systems

and over heterogeneous networks poses certain implementation constraints. Thus, inter-process communication

is based on the TCP/IP network protocol, while operating system transparency is ensured by using ACE, an

345 | P a g e

object-oriented network programming toolkit for developing communication software [5]. DIPE is now

implemented on UNIX and Windows NT/95 workstations.

III. THE ALGORITHM REPOSITORY

The functional core of Distributed Image processing Environment is the set of available image processing

algorithms, private or public, local or network wide. An important feature of DIPE is that it allows easy

integration of third party algorithms, i.e. software modules where only an executable is available and the only

information known is the command line syntax, as well as the input and output data formats. The integration is

achieved through the algorithm wrapper, a single generic process. The wrapper converts input data from the

application format to the format that a specific IP algorithm requires, executes the algorithm and finally converts

the output data of the algorithm to the format of the user application. While the algorithm is being executed, the

wrapper is responsible to handle requests from the user application. Such requests include the termination or

pause of the execution, or the resumption of a previously paused execution. Additionally, DIPE provides a

library of ready-to-use routines for the development of new IP algorithms, which consists of basic routines

related to the starting and ending phases of the algorithm, as well as of routines that support a more

sophisticated mode of user-algorithm communication during execution.

In routine medical image processing, a common situation involves processing images

using the same set of algorithms often with a standard set of parameter values. DIPE

provides the mechanisms to simplify the complicated process of executing individual

algorithms sequentially, by grouping them together and thus creating a macro-algorithm

(macro). In general, the DIPE macro is a set of individual algorithms that may be performed independently on

the same or different data sets, or maybe performed sequentially. There is no constraint on the complexity of

algorithm combinations and the inter-relationships of their input and output data. The execution of a macro is

the responsibility of a special macro agent. The macro agent acts as a mediator for macro

executions. It consists of three main functional parts: the interface with the application, the interface with the

rest of the system(management and execution agents), and the module which is responsible for the management

of the macro execution. The macro agent models macros as a directed acyclic graph, thus enabling macro

decomposition and individual scheduling of its components.

IV. RESOURCE MANAGEMENT

Quality of service in DIPE is guaranteed by a sophisticated resource management and execution scheduling

mechanism. The scheduling of a requested algorithm execution to the most appropriate processing element (PE)

is a distributed decision making process based on the market metaphor, and is realised through the co-operation

of the execution agents [6, 3].

Upon request for an algorithm execution, the management agent initialises an „auction‟. The request is

forwarded to the appropriate „bidders‟, that is those execution agents that are able to perform the request. Each

execution agent evaluates the request by taking into

346 | P a g e

consideration the load of the local PE, the possible existence of the required input data in its local cache vs. the

cost for transferring the data through the network, and the execution characteristics of the particular algorithm.

Then, each execution agent makes a bid to the management agent by returning the estimated „cost‟ of the

execution. The management agent evaluates all the bids it receives and assigns the execution to a particular

execution agent. It is important to note that the execution characteristics of each algorithm are drawn from its

execution profile, which includes information on size of input/output data, PE memory needed at runtime

(relative to input data) and time needed for execution(normalised to input data and PE). A good approximation

about the memory requirements and the execution time of an algorithm is derived from a statistical analysis

based on previous execution profiles of the algorithm.

V. DISCUSSION

DIPE has been designed and developed to offer image processing services over integrated health care services

networks, and to act as an integration platform for diverse image processing software. It exhibits a modular,

extensibleand scaleable architecture that ensures system robustness and execution persistence. A sophisticated

resource management and execution scheduling mechanism allows the medical expert to take full advantage of

geographically distributed computational resources. Future research will address the development of intelligent

and customisable mechanisms for the description, management, and retrieval of image processing software

modules, as well as charging mechanisms based on quality of service.DIPE is currently being extended through

its functional integration with other medical information systems that have been developed in our laboratory.

Important examples include CoMed [7], a desktop conferencing application which allows interactive real-time

co-operation among several medical experts, as well as TelePACS [4], an information system for medical image

management and communication.

DIPE is one of the diverse telematics applications incorporated in the regional health telematics network, which

is currently being developed by ICS-FORTH on the island of Crete.

REFERENCES

[1] S.C. Oprhanoudakis, E. Kaldoudi, and M. Tsiknakis, “Technological Advances in Teleradiology”, Eur. J.

Radiology, vol. 22, 205-217, 1996.

[2] S.C. Orphanoudakis, “Supercomputing in Medical Imaging” IEEE Eng Med Biol, vol.7, 16-20, 1988.

[3] P. Maes, “Modelling Adaptive Autonomous Agents”, Artificial Life Journal, ed. C.Langton, vol. 1, nos.

1&2, MIT Press, 1994.

[4] S.C. Orphanoudakis, M. Tsiknakis, C. Chronaki, S. Kostomanolakis, M. Zikos, and Y.Tsamardinos,

“Development of an Integrated Image Management and Communication System on Crete”. In: Lemke

HU, Inamura K, Jaffe CC, Vanier MW, eds. Proc. Of CAR‟95, Berlin, p. 481-487, 1995.

[5] D.C. Schmidt, “The ADAPTIVE Communication Environment: An Object-Oriented Network

Programming Toolkit for Developing Communication Software”, 12th Sun User Group Conference, San

Francisco, California, June14-17, 1993.

347 | P a g e

[6] D.F. Ferguson, Y. Yemini, C. Nikolaou, “Microeconomic Algorithms for Load Balancing in Distributed

Computer Systems.”, . In Proceedings of International Conference on Distributed Systems (ICDCS 88).

San Jose,California: IEEE Press, 1988.

[7] M.Zikos, C. Stephanidis, and S.C. Orphanoudakis, “CoMed:Cooperation in Medicine”, Proceedings of

EuroPACS‟96, pp. 88-92, Heraklion, Gr eece, October 3-5,199

