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ABSTRACT 

This paper investigates the analysis for buckling response of nanobar with various end conditions using 

Eringen’s nonlocal elasticity theory. The  governing equations for the buckling  of nanobar is  formulated using 

Euler- Bernoulli Beam theory to study the effect of the small- scale parameter on the buckling behaviour of 

nanobars. The small- scale parameter is taken into consideration by using Eringen’s nonlocal elasticity theory. 

The analytical solutions are obtained for simply supported, clamped- clamped, clamped- hinged and cantilever 

end conditions. The effects of the nonlocal parameter on the buckling loads are studied. The results and the 

available solutions are compared and the buckling loads for all boundary conditions are found to be in excellent 

agreement with existing results. 
 

Keywords: Buckling Loads, Boundary Conditions, Eringen’s Nonlocal Elasticity, Nonlocal 

Parameter. 

 

I. INTRODUCTION 

 

Carbon nanotubes were discovered by Iijima [1] in 1991.Vibration and buckling problems of straight carbon 

nanotubes (CNT) occupy an important place in micro- and nano-scale devices and systems. Examples include 

nanosensors, nanoactuators, nanooscillators, micro-resonators and field emission devices, etc. In order to make 

full potential application of CNT, it is essential to understand their mechanical behavior well. In many papers, 

analytical analyses of the mechanical behavior of CNT have been proposed besides the experimental work by 

Carbon nanotubes can be modeled using atomistic or continuum mechanics methods. The atomic methods are 

limited to systems with a small number of molecules or atoms and therefore they are restricted to the study of 

small scale modeling. Unlike atomistic modeling, continuum models view CNT as a continuous beam. 

C. M. Wang et al. [2] reviews recent research studies on the buckling of carbon nanotubes. The structure and 

properties of carbon nanotubes are introduced. The various buckling behaviours exhibited by carbon nanotubes 

are also presented. It also found that CNTs have the remarkable flexibility and stability under external loading. 

Metin Aydogdu [7] developed the Nonlocal elastic rod model and applied it to investigate the small scale effect 

on axial vibration of the nanorods. In this study generalized non local beam theory is proposed to study bending, 

buckling free vibrations of nanobars. Nonlocal constitutive equations of Eringen are used in the formulations. 

Q.Wang, K.M.Liew [5] investigated the local buckling of carbon nanotubes under bending. Devesh Kumar et al. 
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[10] studied the buckling of carbon nanotubes, modelled as nonlocal one dimensional continuum within the 

framework of Euler–Bernoulli beams. The authors of this paper are of the opinion that the studies here reported 

are not sufficient to thoroughly understand the effect of small scale parameter and the limitations of classical 

elastic theory in dealing with the length scale of nanobars. 

For realistic analysis of CNT, one must incorporate small-scale effects to achieve solutions with acceptable 

accuracy. Since the classical continuum models are scale free, for the modeling of CNT structures one can use 

modified elasticity theories like Eringen theory (Eringen, 1983; Eringen and Edelen, 1972) or strain gradient 

theories (Lam et al., 2003; Kong et al., 2009; Akg¨oz and Civalek, 2011). In this way, the internal size scale 

could be considered in the constitutive equation simply as a material parameter. In the theory of nonlocal 

elasticity, the stress at a reference point is considered to be a functional of the strain field at every point in the 

body. It can be concluded that continuum mechanics with size-effect could potentially play a useful role in the 

analysis related to nanostructures. The first application of the Eringen nonlocal constitutive relation on the 

Euler-Bernoulli beam is the work of Peddinson et al. (2003).  

 

1.1 Nonlocal Elasticity Theory 

In the analysis of macro beams, the classical theory of elasticity is used. But when the small scale/ nano scale 

(e.g. CNT) is taken into account, the classical theory does not hold good. Hence the Nonlocal elasticity which 

was proposed by Eringen is adopted to account for small scale effect in elasticity by assuming the stress at a 

reference point to be a functional of the strain field at every point in the body. In this way, the internal size scale 

could be considered in the constitutive equations simply as a material parameter. The application of nonlocal 

elasticity, in micro and nanomaterials, has received much attention among the nanotechnology community 

recently. This important length scale effect is used in vibration, buckling and bending of CNTs studies. The 

application of nonlocal elasticity is recommend in revealing scale effects for nano-materials like CNTs.  

According to A.Cemal Eringen [3], the nonlocal stress tensor  at point X is expressed as: 

  

Use of integral constitutive relations is relatively more difficult in computation than using algebraic or 

differential constitutive relations. Realizing this fact Eringen proposed an equivalent differential model as: 

 

and E are a normal stress, a normal strain and Young’s modulus, respectively. 

   is the function of material constant, 

 material constant  

            a = internal characteristic lengths (such as the lattice spacing). 

 is called the nonlocal parameter which is a factor to consider the effect of small length scale. 
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II. FORMULATION 

2.1 Formulation of Governing Equation 

The governing equation for the stability analysis of a nanobar is based on the assumptions of Euler- Bernoulli 

beam theory and is derived as follows. 

                              

 

Fig.1 Equilibrium Condition of a Differential Element of a Nanobar Subjected to Axial Loads. 

Force equilibrium in vertical direction, 

∑Fy = 0 

                                                                                                                                                             (1)    

Taking moment about o, 

 ∑M = 0 

                                                                                                                                            (2)  

Substitute  Eqn.(2) into Eqn.(1), 

                                                                                                                                          (3) 

We know, 

M =                                                                                                                                                   (4a) 

                                                                                                                                       (4b) 

Using Eringen’s Nonlocal Constitutive Law, 
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                                                                                                                       (5) 

Substitute (Eqn.5)  into Eqn.(4a), 

  

Making use of Eqn. ④b, 

   

   

   

                                                                                                                                (6) 

From (Eqn.6), 

                                                                                                                         (6a) 

Considering Eqns (3) and (2), 

                                                                                                                                                       (3) 

Eqn.(3) = (Eqn.6a) 

  

                                                                                                                                (7) 

Substitute Eqn.(7) into Eqn.(2), 

                                                                                                      (8) 

Substitute Eqn.(8) into Eqn.(1), 

  

 
 

2.2 Column Buckling Equation Using Nonlocal Elasticity Theory 

  

  

  

Let  

(or)   
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The roots are :  

  

         (Here i=0, =k) 

The solution is: 

  

 

III. ANALYSIS OF NANO BAR WITH VARIOUS BOUNDARY CONDITIONS 

3.1 Simply Supported end Conditions 

 

  

  

  

  

The boundary conditions are: 

  

  

  

  

  

  

It is an Eigen value problem. 
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For smaller buckling loads, (n =1).The critical buckling load for column is given by, 

  

 

3.2 Clamped- Clamped end Conditions 

 

  

       

  

  

The boundary conditions are: 
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It is an Eigen value problem. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

For smaller buckling loads, (n =1).The critical buckling load for column is given by, 
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3.3 Clamped- Hinged end Conditions 

 

  

  

  

  

  

  

The boundary conditions are: 

  

  

  

  

  

  

It is an Eigen value problem. 
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For smaller buckling loads, (n =1).The critical buckling load for column is given by, 

  

 

3.3 Cantilever end Conditions 

  

 

  

  

  

  

  

  

The boundary conditions are: 

  

  

  

  

  

It is an Eigen value problem. 



 

423 | P a g e  

  

  

  

 ;    ;   

  

    

  

  

   For smaller buckling loads, (n =1).The critical buckling load for column is given by, 

  

 

IV. RESULTS AND DISCUSSIONS  

 

Analysis of buckling loads has been done for nanobars of various spans with different nonlocal parameters. The 

results are tabulated and graphically depicted for various boundary conditions. 
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4.1 Simply Supported Column  

Table 1:  Small Scale Effect on Simply Supported end Nanobars at Different Scale  Coefficients 

for Buckling Loads. 

 

 

Fig .2 Small Scale Effect on Simply Supported end Nanobars at Different Scale Coefficients for 

Buckling Loads. 

 

4.2 Clamped- Clamped Column  

Table 2: Small scale effect on clamped-clamped end nanobars at different scale coefficients for buckling loads. 

 

Length in nm 

Buckling Load 

eo = 0 eo = 0.33 eo = 0.67 eo =1 

5 19.384 9.3475 3.57245 1.78496 

6 10.5 6.6 2.8 1.5 

10 4.846 3.82048 2.2 1.2 

15 2.15378 1.92422 1.44377 1.02781 

20 1.2115 1.13531 0.948988 0.749586 

25 0.7753 0.743431 0.658738 0.556059 

30 0.53844 0.52285 0.479494 0.422681 

35 0.395592 0.387109 0.36282 0.329326 

40 0.302875 0.297878 0.283284 0.262444 

45 0.239309 0.236178 0.22691 0.21334 

50 0.19384 0.191781 0.185624 0.176443 

55 0.160198 0.158789 0.154545 0.148128 

60 0.134611 0.133615 0.130597 0.125985 
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Length in nm 

Buckling Load 

eo = 0 eo = 0.33 eo = 0.67 eo = 1 

  

    5 77.535 14.6316 4.141 1.9155 

6 53.844 13.509 4.046 1.894 

7 39.55 12.387 3.939 1.8711 

8 30.287 11.303 3.822 1.8444 

9 23.93 10.284 3.6988 1.815 

10 19.383 9.34254 3.569 1.7833 

15 8.615 5.8301 2.9016 1.5994 

20 4.8459 3.8196 2.2993 1.3976 

25 3.1014 2.6463 1.8149 1.2025 

30 2.15377 1.924 1.4433 1.0273 

35 1.5823 1.4547 1.1621 0.87632 

40 1.21149 1.1352 0.94877 0.7492 

45 0.9572 0.9089 0.78539 0.64356 

50 0.775356 0.74339 0.65863 0.5559 

55 0.64079 0.6188 0.55893 0.48315 

60 0.53844 0.52283 0.47944 0.42259 

 

Fig. 3 Small Scale Effect on Clamped-Clamped end Nanobars at Different Scale Coefficients for 

Buckling Loads. 
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4.3 Clamped- Hinged Column  

Table 3:  Small Scale Effect on Clamped- Hinged end Nanobars at Different Scale  Coefficients 

for Buckling Loads. 

Length in nm 

Buckling Load 

eo = 0 eo = 0.33 eo = 0.67 eo = 1 

          

0.000000005 3.87676E-08 1.2309E-08 3.93E-09 1.869E-09 

0.00000001 9.6919E-09 6.3041E-09 3.01E-09 1.633E-09 

0.000000015 4.30751E-09 3.477E-09 2.17E-09 1.349E-09 

0.00000002 2.42298E-09 2.136E-09 1.56E-09 1.085E-09 

0.000000025 1.5507E-09 1.4279E-09 1.14E-09 8.665E-10 

0.00000003 1.07688E-09 1.0162E-09 8.64E-10 6.955E-10 

0.000000035 7.91176E-10 7.5793E-10 6.7E-10 5.64E-10 

0.00000004 6.05744E-10 5.8606E-10 5.32E-10 4.63E-10 

0.000000045 4.78612E-10 4.6624E-10 4.31E-10 3.848E-10 

0.00000005 3.87676E-10 3.7952E-10 3.56E-10 3.238E-10 

0.000000055 3.20393E-10 3.148E-10 2.99E-10 2.755E-10 

0.00000006 2.69219E-10 2.6526E-10 2.54E-10 2.368E-10 

 

 

Fig .4 Small Scale Effect on Clamped-Hinged end Nanobars at Different Scale Coefficients for Buckling 

Loads. 
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4.4 For Cantilever Column 

Table 4:  Small Scale Effect on Cantilever  Nanobars at Different Scale Coefficients for 

Buckling Loads. 

Length in nm 

Buckling Load 

eo = 0 eo = 0.33 eo = 0.67 eo = 1 

          

5 5 5 5 5 

6 3.365 2.836 1.9022 1.24 

7 2.472 2.174 1.579 1.094 

8 1.893 1.713 1.3213 0.9639 

10 1.21149 1.13523 0.94877 0.74929 

15 0.53844 0.52283 0.47943 0.42259 

20 0.302873 0.29287 0.283264 0.26241 

25 0.193839 0.19177 0.185615 0.17643 

30 0.1346 0.13361 0.130592 0.12598 

35 0.098897 0.098358 0.096711 0.094156 

40 0.075718 0.0754017 0.07443 0.072907 

45 0.059827 0.059629 0.059019 0.058058 

50 0.04846 0.048329 0.047929 0.047293 

55 0.040049 0.0399606 0.039686 0.039249 

60 0.033653 0.0335899 0.033396 0.033086 

 

 

Fig .5 Small scale effect on cantilever nanobars at different scale coefficients for buckling loads. 
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4.5 Discussions  

The effect of buckling loads is discussed for various boundary conditions for different scale coefficients and 

length to illustrate the influence of small length scale on the buckling of nanorods. Variation of buckling load 

parameter with length of rod is given for different scale coefficients e0a for four boundary conditions considered 

in Figs. 1, 2, 3 and 4. It is obvious  that, nonlocal solution of the buckling load is smaller than the classical 

(local)  solution due to the effect of small length scale. Furthermore, increasing the nonlocal parameter 

decreases the   buckling load. The result may be interpreted as increasing the nonlocal parameter for fixed L 

leads to a decrease in the stiffness of structure. Approximately, for L ≥ 20nm all results converge to the classical 

buckling load. It means that the nonlocal effects are lost after a certain length. The nonlocal effects are more 

pronounced for C–C boundary conditions when compared with C–F boundary conditions. e0a = 0 corresponds to 

classical solution. In general, the effect of nonlocal parameters is to reduce the buckling loads. 

 

V. CONCLUSIONS 

 

The above analytical investigations lead to the conclusion that the effect of the increase in nonlocal parameter is 

to decrease the buckling loads in nanobars. The nonlocal effects are very minimal at L=10 nm and disappear for 

greater lengths. The following are noteworthy: 

(i) In the case of nanobars under axial forces, the nonlocal solution of buckling load is smaller than the 

classical elasticity solution.. 

ii)    The buckling load of nanobars decreases with increase in nonlocal parameter. 

iii)   The buckling load of nanobars decreases with increase in length of the bar. 
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