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ABSTRACT 

Medical Imaging is the technique or process of creating visual representations of the interior of a body for 

clinical analysis and medical intervention. It seeks to reveal internal structures, as well as to diagnose and treat 

disease. It also establishes a database of normal anatomy and physiology to make it possible to identify 

abnormalities. Medical imaging is often perceived to designate the set of techniques that non-invasively produce 

images of the internal aspect of the body. Positron Emission Tomography (PET) is a molecular Image technique 

that provides the information that how tissues and organs are functioning. It consists of feature of radio-

nucleids that they decay via the emission of positrons. Kernel Density Estimation via Diffusion is considered to 

construct the histogram of PET images, which are allowed by smoothing. A novel segmentation frame work is 

proposed in this work to quantify Tuberculosis (TB) disease in small animals. The PET segmentation framework 

evaluates the robustness and accuracy yielded with computer-aided Quantification and visualization of 

abnormalities on PET-CT images of small animals infectious disease. The segmentation of diffuse will be well-

suited by segmentation algorithm. Visualization of pathologies in three dimensions with PET functional 

information over laid for determining the optimal histology slice localization. 
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I. INTRODUCTION 

 

Molecular imaging techniques depend upon molecular mechanisms operative in vivo. This imaging technique 

encompasses the visualization, characterization and measurement of biological processes at the molecular and 

cellular levels in humans and other living systems. The techniques used include Positron Emission Tomography 

– Computed Tomography(PET-CT), nuclear medicine, Magnetic Resonance Imaging (MRI), Magnetic 

Resonance Spectroscopy (MRS), optical imaging and ultrasound. The selection of the imaging modality often is 

determined based on the temporal and spatial resolution, field of view, sensitivity of the imaging system, depth 

of the biological process, the molecular or cellular process to image, and the availability of suitable probes and 

labels than can be delivered to the imaging target. 
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II. MOLECULAR IMAGING MODALITIES 

1.1 CT Imaging 

Images in CT (spatial resolution of 50–100 μm) are obtained when component tissues differentially absorb x-

rays passing through the body and are collected by high resolution CCD detectors. CT is essentially an 

anatomical imaging  modality. 

 

1.2 Nuclear Imaging 

Nuclear imaging or also called as radionuclide scanning provides an effective diagnostic tools for the 

radiologists as it shows not only the structure of an organ but also the function of the organ. Nuclear imaging 

routine uses small amounts of radioactive material, or tracer for diagnostic purpose. Radioactive tracers used in 

nuclear imaging are in most cases is administered into a vein and some are given orally. After an administration 

of radioactive tracers, patient is required to rest for a certain period to allow distribution of radioactive tracer in 

the body. In the end, for imaging purpose, a specialized gamma camera is used to detect the radiation throughout 

the body.       

Most commonly used techniques in nuclear imaging are positron emission tomography(PET) and single photon 

emission computed tomography (SPECT). 

1.2.1 Positron Emission Tomography (PET) 

Positron emission tomography or known as „PET‟ is a rapidly developing nuclear imaging technique, with a 

clinical role that now exceeds almost 15 years. It is a quantitative tomographic imaging technique which 

produces cross-sectional images that are composites of volume elements. The signal intensity for PET images in 

each voxel is dependent upon the activity of radionuclide tagged with radioactive tracer which intravenously 

administered at the earlier stage before the scanning takes place. A scanner which usually called PET scanner 

employs a gamma photon coincidence detection system designed for oppositely directed annihilation photons 

emitted indirectly by the positron decay of PET radionu‐clides.This logic allows acquisition of images that are 

quantitative three dimensional (3-D)maps of radio labeled tracers in tissue.  The most commonly used PET 

radioactive tracer is the glucose derivative, 2-[18F]fluoro-2deoxy-D-glucose or commercially known as 

[18F]FDG, with numerous other tracers under development capable of highlighting a broad range of organ and 

tissue metabolic functions. 

1.2.2 Single Photon Emission Computed Tomography (SPECT): 

Similar to PET, single photon emission computed tomography (SPECT) also uses a radioactive tracer that is 

adminis-tered to the patient and a scanner to record data that a computer constructs into two or three 

dimensional images. SPECT technique employs a gamma camera that rotates around the patient to detect a 

radioactive tracer in the body. In contrast to PET this employs shorter half-lived tracers as opposed to the 

SPECT tracers. If a tumor is present, the antibodies will stick to it and thus allow for detection of timorous cells. 

 

III. LITERATURESURVEY 

 

3.1 Fundamentals of PET-CT Imaging 

To obtain metabolic/functional information of tissues through PET scans, molecular imaging probes, such 

as18F-FDG and NaF, are used to interrogate specific targets such as cell surface receptors, enzymes, and 
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structural proteins. Given the low resolution in PET, the superior anatomic localization of a lesion is achieved 

by fusing the PET images to CT images such that the lesions identified on PET are then anatomically localized 

by analyzing the corresponding cross-sectional CT slices. To obtain anatomical and physiological information 

from tissues and organs, CT is usually used in small animal studies since it is the gold standard for clinical 

practice, particularly for lung studies. This dual-imaging modality approach provides a better understanding of 

the underlying disease by fusing both modalities into a single view. 

 

3.2 What to Measure in CT? 

Structural imaging methodologies (i.e., CT and MRI) provide detailed knowledge of anatomical structures such 

as their shape, numbers, dimensions, surfaces, geometric arrangements, locations, and relative positioning. 

Among these morphological measurements, the total lung volume and the fraction of lungs occupied by disease 

are common measurements used by clinicians and researchers to evaluate respiratory pathology. Abnormal CT 

imaging patterns (volume occupied by gas, tissue, and total number of alveoli) are also conventional measures 

frequently used by clinicians to evaluate disease state, severity, and progression of respiratory disorders; 

however, accurate, robust, and fast computation of these volumetric measurements require computer-aided 

lesion detection, image segmentation, and automatic quantification methods. Due to significant limitations in 

imaging (i.e., low specificity and similar appearances between normal and abnormal tissue), manual processing 

and computing the aforementioned metrics are still too time-consuming and difficult. 

 

3.3 What to Measure in PET 

PET imaging, as a functional imaging methodology, provides a way for making in vivo measurements of 

specific biochemical reactions. Conventionally, the standardized uptake value (SUV), a quantitative measure of 

tissue activity, is widely used in assessing PET images. SUV can be used either voxel-wise or over a 

region/volume; and particularly in the latter case, precise identification of the region of interest (delineation) 

plays a vital role in diagnostic decision systems. In addition, similar to the morphological metrics used in 

structural imaging methodologies, volume and area of activity regions, as well as its SUV-related indexes, are 

used to evaluate disease extent, characterization, and severity. In other words, the precise volume/surface 

information of uptake regions is needed due to two reasons: (a) total volume/surface occupied by radiotracer 

activity can be used independently to compare the fraction of the lung affected by the infection to the fraction of 

the abnormal anatomical structure having activity, because only a small percentage of the abnormal tissues (i.e., 

consolidation)may have high metabolic activity, depending on the disease pathology, and (b) the accurate 

computation of SUV-related evaluation metrics requires precise delineation of uptake regions from PET scans. 

Even small errors in delineation can distort SUV calculations by changing the margin of the uptake regions, and 

this can eventually affect the characterization of the disease, evaluation of response to therapy, and the therapy 

planning. 

 

IV. METHODS 

1. Kernel Density Estimation via Diffusion: 

Generally, the histogram had been utilized to give a visual hint to the general state of the probability density 

capacity (pdf). The observed histogram of any image  is the summation of histograms from numerous hidden 
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articles "covered up" in the observed histogram. Our proposed techniques expect that a top in the histogram 

relates to a moderately more homogeneous area in the image, it is likely that a top includes stand out class. The 

justification behind this supposition is that the histogram of items, in medical images, are ordinarily considered 

the summation of Gaussian curves, which infers a top compares to a homogeneous region in the image(s). 

Because of the way of medical images, histograms have a tendency to be extremely boisterous with vast 

variability. This makes the optimal threshold choice for differentiating objects of interest troublesome. In the 

first place, the histogram of the image needs to be assessed in a hearty manner such that an expected histogram 

is less delicate to neighborhood local peculiarities in the image information. Second, the assessed histogram 

ought to be more delicate to the clustering of test values such that data clumping in certain regions and data 

sparseness in others–particularly the tails of the histogram–should be locally smoothed. To avoid all these 

problems and provide reliable signatures about objects within the images, herein we propose a framework for 

smoothing the histogram of PET images through diffusion-based KDE. KDE via diffusion deals well with 

boundary bias and are much more robust for small sample sizes, as compared to traditional KDE. We detail the 

steps of the KDE as follows: 

Traditional KDE utilizes the Gaussian kernel density estimator, however it needs nearby adjustment; 

subsequently, it is sensitive to exceptions. To enhance neighborhood adjustment, a versatile KDE was made in 

view of the smoothing properties of linear diffusion processes. The kernel was seen as the transition density of a 

diffusion process, henceforth named as KDE via diffusion. For KDE, given N independent realizations, 

Xu∈{1,...,N }, the Gaussian kernel density estimator is customarily characterized as 

G(x,t) = x,Xu;t), x R;……………(1) 

Where 

(x,Xu;t) =  

is a Gaussian pdfat scale t, usually referred to as the bandwidth. An improved kernel via diffusion process was 

constructed by solving the following diffusion equation with the Neumann boundary condition 

 g
diff 

(x,Xu;t) = ]...(2) 

 After KDE via diffusion, an exponential smoothing was connected to further decrease the noise; the crucial 

state of the histogram was saved all through this methodology. Data clumping  and sparseness in the first 

histogram were removed, and any noise staying after KDE via diffusion was diminished impressively while as 

yet safeguarding the state of the pdf. The resultant histogram can now serve as a capable stage for the 

segmentation of the objects, the length of a powerful clustering methodology can place the valleys in the 

histogram. 

 

V AFFINTY PROPAGATION 

 

Clustering data by recognizing a subset of agent illustrations is essential for processing signals and identifying 

examples in data. Such "exemplars" can be found by arbitrarily picking a starting subset of information focuses 

and afterward iteratively refining it, however this functions admirably just if introductory decision is near to a 

decent arrangement. We contrived a strategy called "affinity propagation," which takes as info measures of 

likeness between sets of data focuses. Real valued messages are traded between data points until a high-quality 

set of models and comparing clusters continuously rises. AP is valuable on the grounds that it is effective, 
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insensitive to initialization, and produces groups at a low cluster rate. Essentially, AP partition the data taking 

into account the augmentation of the aggregate of likenesses between data points such that each one part is 

connected with its model (in particular its most prototypical data point. Dissimilar to other model based 

grouping systems, for example, k-centers clustering and k-means, Hence execution of AP does not depend on a 

"good" initial cluster/group. Rather, AP acquires exact arrangements by approximating the NP-hard issues in a 

significantly more productive and precise way. AP can utilize arbitrarily complex affinity functions since it 

doesn't have to inquiry or incorporate over a parameter space. 

 

5.1 Background on AP 

AP at first expect all data points(i.e., voxels) as models and refines them down iteratively by passing two 

"messages" between all focuses: responsibility and availability. Messages are scalar values such that each one 

point makes an impression on all different focuses, showing to what degree each of alternate focuses is suitable 

to be its model. The primary message is called responsibility, demonstrated by r(i, k), and is the way mindful 

point k is to be the model of point i. In availability, indicated by a(i, k), each one point makes an impression on 

all different guides and demonstrates toward what degree the point itself is accessible for serving as a model. 

The responsibility and availability were defined in Frey and Dueck's original paper as 

r(i,k)s(i,k) – 

a(i,k)min{0,r(k,k)+} 
 

where s(i, k) is the likeness between point i and point k, and k is all different focuses aside from i and k. Point k 

is not mindful to be the model for point i if there is an alternate point that portrays i better than k; subsequently, 

the most extreme quality for responsibility is arrived at. The whole of availabilities and responsibilities at any 

emphasis gives the current models and orders. At first, all focuses are thought to be conceivable models, which 

ensure all inclusive ideal arrangements. AP uses max-product belief propagation to acquire great models 

through maximizing the objective function argmaxk[a(i, k) + r(i, k)]. 

 

5.2 Novel Affinity Metric Construction 

We developed a novel affinity metric to model the relationship between all data points utilizing the precisely 

evaluated histogram with the principle supposition that closer force qualities are more prone to have a place with 

the same tissue class. As such, the information is made out of focuses lying on a few unique straight spaces; 

however this data is covered up in the image histogram, given that the histogram is deliberately evaluated in the 

past step. This segmentation processes recovers these subspaces and relegates data points to their individual 

subspaces. Simultaneously, likenesses among the voxels assume an indispensable part. Most clustering routines 

are centered around utilizing either Euclidean or Gaussian separation capacities to focus the likeness between 

data points. Such a separation is direct in execution; be that as it may, it drops the shape data of the hopeful 

circulation. Since both probability- and intensity-based differences of any two voxels convey profitable data on 

the determination of appropriate threshold determination, we propose to combine these two limitations inside 

with another affinity model. These constrains can basically be joined with weight parameters n and m as: 

s(i,j) = -(|
n
 + ||

m
)

1/2 

Where s is the closeness capacity, d_ij^G is the registered geodesic separation between point i and j along the 

pdf of the histogram, and d_ij^xis the Euclidean separation between point i and j along x-axis.  
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The geodesic separation or distance   between the two information focuses in the image naturally reflects the 

similitude because of the gradient information (i.e., voxel intensity differences). It likewise fuses extra 

probabilistic data through upholding neighborhood groupings for specific locales to have the same mark 

 =   where j > i. 

Once the similarity function is computed for all points, AP tries to maximize the energy function 

E(c) =  ci) + ….(3) 

An exemplar-consistency constraint δk (c) can be defined as 

.(4) 

This limitation authorizes substantial design by presenting a huge punishment if some information point i has 

picked k as its model without k having been effectively named as a model. In the wake of embeddings a novel 

affinity function definition into the vitality imperative to be expanded inside the AP calculation, we got the 

following objective function: 

E(c) = - 

   + ...(5) 

All voxels are marked in light of the advancement of the target capacity characterized previously. Since the 

upgrade rules for AP compare to altered point recursions for minimizing a Bethe free-energy approximation, AP 

is effectively inferred as an occurrence of the max-entirety calculation in a factor graph portraying the 

requirements on the marks and the energy function. 

 

VI. PLAN OF ACTION 

1. Framework: 

It is followed as, 

 In this work PET and CT images of rabbit lungs are considered for investigation. 

 PET and CT Images are acquired through database. 

 Manual adjustments should be carried on the images when they are necessary. 

 A GUI is used for Quantification analysis 

 The Quantification analysis is to be carried out on CT and PET images such as 

 Visualization 

 ROI Segmentation 

 3D Rendering.  

 Auto Reporting 

 Quantification 

 

VII. RESULT & ANALYSIS 

 

In this project PET and CT lung images of a rabbit lung are considered as inputs for Quantification. A GUI 

framework called QAV-PET (Courtesy: QAV: PET by Foster and Bagci of NIH)is used. 

QAV-PET analysis allows easy, intuitive and efficient visualization and quantification of multi modal medical 

images. This is carried out in different steps such as Visualization, Interpolation, segmentation, Rendering, auto-

reporting and Quantification 
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The results for each step are given below: 

7.1 Visualization 

Functional (PET image) and Anatomical (CT image) images of rabbit are read into the framework. These 

images can be shown in three categories: 

a) Fused image 

b) Functional image 

c) Anatomical image 

The Figure 1(a), 1(b) 1, (c) shows the fused image(which is formed by fusion of pet and ct images), functional 

image(pet image) and anatomical image(ct image). 

       

Fig 1(a): Fused Image               Fig1 (b): Functional Image        Fig1(c): Anatomical Image 

 

7.2 ROI Definition 

Region of Interest (ROI) is created to focus on specified area of lung mask to analyze the situation of image and 

quantify the image. 

 

Fig2: ROI Defined in Fused Image 

7.3 Interpolation  

Once the ROI is created, the image is subjected to interpolation. This is shown in below figure.5. Interpolation is 

used for the calculation of the value of a function between the values already known. Here Interpolation is used 

to measure the values of already created ROI regions and this gives us the accurate measure. 

 

Figure 3: Interpolated Fused Image 

7.4 Segmentation 

Once the ROI is created, the segmentation process is carried out using Affinity Propagation Image 

segmentation. As a process the lesions formed due to Tuberculosis are segmented as shown in figure. 
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Figure 4: Image segmentation 

7.5  Opacity 

The process shown below in figure is used for changing the opacity between Functional and Anatomical images. 

Threshold is adjusted in order to remove the background areas for improved visibility of underlying anatomical 

image. 

 

Fig 5 (a): 0                          Fig 5(b): 0.25                 Fig5(c): 0.50                 Fig5 (d):1 

Figure 5(a), (b), (c), (d): Representation of varying the opacity between PET and CT on the segmentations 

 The opacity ranges from 0, fully anatomical (CT) information to 1, fully functional (PET) information. 

 

7.6 Rendering 

The Rendering process is done in 3D-visualization. The Rendering is carried out for both lung mask and AP 

segmented Image. The figure 9 which have the lung mask rendering shows the affected area in red color 

indicated by a color bar adjacent to image. The color bar represents the intensity of damage happened to the 

lungs. 

         

Fig6 (a)   Fig 6(b)      Fig 6(c)

         

                                         Fig 6(d)              Fig6(e)                 Fig6(f) 

Figure 6(a), (b), (c), (d), (e),(f),(g) shows rendering of lung mask, lesion rendering and interpolated image. 

 

7.7 Auto-Reporting 

It produces a report which includes the most important information needed for quantifying the disease and high 

uptake value regions. The report includes both Qualitative and Quantitative data. Quantitative data includes 
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SUVmean, SUVmax and volume of current label and the location of SUVmax on axial, sagittal and coronal view of 

PET Image. 

 

Fig7(a)     Fig7(b) 

Figure: These images represent the reporting for AP segmented images for different opacity values. 

 After the Reporting process, we acquire the Qualitative metrics and they are tabulated below : 

7.8 Tabular Column 

V O L U M E S U V m a x S U V m e a n 

0 . 2 7 4 0 2 . 7 9 3 0 2 . 2 5 4 0 

0 . 2 7 7 0   2 . 7 9 3 0 2 . 2 6 2 1 

1 . 6 4 6 0 2 . 7 9 3 0 1 . 2 9 3 0 

1 . 6 8 3 0 2 . 7 9 3 0 1 . 2 8 2 1 

Table: Qualitative Metrics of Fused Images 

 R a n g e T y p e  o f  l e s i o n 

 

SUV Value 

 0 < 2 < 2 . 5 B e n i g n 

> 2 . 5 M a l i g n a n t 

Table: Lesion Identification 

These values represent the uptake values of lesions. 

The report includes both quantitative and qualitative data. The quantitative data includes the SUVmax, SUV 

mean, and the volume of the current label, and, additionally, it provides the location of the SUVmax on the 

axial, sagittal, and coronal view of the PET image, the CT image and the PET-CT fused image All of this 

information allows the user to get a quick view of the highest uptake lesion, which is important for disease 

severity quantification. 

 

VIII. CONCLUSION 

 

This can be used for quantification and visualization of abnormalities on PET-CT images of small animal 

infectious disease studies. The segmentation algorithm that is implemented has been shown to be particularly 

well-suited for the segmentation of diffuse, multi-focal PET radiotracer uptakes that are commonly seen with 
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infectious diseases. It is used for visualization of the pathologies in three dimensions with the PET functional 

information overlaid for determining the optimal histology and slice localization. When taking histology slices 

from a diseased organ, this three dimensional view of the distribution of the disease will aid researchers in 

determining the best location to take the histology slices from for the best characterization. It includes a 

framework for quantification which can be easily manipulated and tuned to fit any medical imaging application.. 
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