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ABSTRACT 

Genome Analysis of a human being permits useful insight into the ancestry of that person and also facilitates the 

determination of weaknesses and susceptibilities of that person towards inherited diseases. The amount of 

accumulated genome data is increasing at a tremendous rate with the rapid development of genome sequencing 

technologies and gene prediction is one of the most challenging tasks in genome analysis. Many tools have been 

developed for gene prediction which still remains as an active research area. Gene prediction involves the 

analysis of the entire genomic data that is accumulated in the database and hence scrutinizing the predicted 

genes takes too much of time. However, the computational time can be reduced and the process can be made 

more effective through the selection of dominant genes. In this paper, a novel method is presented to predict the 

dominant genes of ALL/AML cancer.  First, to train an FF-ANN a combinational data of the input dataset is 

generated and its dimensionality is reduced through Probability Principal Component Analysis (PPCA). Then, 

the classified database of ALL/AML cancer is given as the training dataset to design the FF-ANN. After the FF-

ANN is designed, the genetic algorithm is applied on the test input sequence and the fitness function is computed 

using the designed FF-ANN. After that, the genetic operations crossover, mutation and selection are carried 

out. Finally, through analysis, the optimal dominant genes are predicted.  
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I. INTRODUCTION 

 

In the public domain huge quantity of genomic and proteomic data are accessible.  The capability to process this 

information in ways that are helpful to humankind is becoming more and more significant [1]. A fundamental 

step in the understanding of a genome is the computational recognition, and in the analysis of newly sequenced 

genomes it is one of the challenges. Accurate and speedy tools are essential for the analysis of genomic 

sequences and for interpreting genes [2]. In such circumstances, conventional and modern signal processing 

techniques plays a vital part in these fields [1].  Genomic signal processing [11] (GSP) is a comparatively novel 

area in bio-informatics. It deals with the utilization of traditional digital signal processing (DSP) techniques in 

the representation and analysis of genomic data.  

The code for the chemical composition of a particular protein is enclosed in the DNA which is a segment of 

gene. Genes functions as the pattern for proteins and some extra products, and the main intermediary that 

translates gene information in the production of genetically encoded molecules is mRNA [4]. Usually sequences 
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of nucleotide symbols, symbolic codons (triplets of nucleotides), or symbolic sequences of amino acids in the 

corresponding polypeptide chains present in the strands of DNA molecules represent the genomic information. 

[2]. Gene expression microchip, which is perhaps the most rapidly expanding tool of genome analysis enables 

simultaneous monitoring of the expression levels of tens of thousands of genes under diverse experimental 

conditions. An influential tool in the study of collective gene reaction to changes in their environments is 

presented by gene expression microchip, and it also offers indications about the structures of the involved gene 

networks [3].  

Nowadays, in a solitary experiment by employing microarrays the expression levels of thousands of genes, 

possibly all genes in an organism can be measured simultaneously [4]. In monitoring genome-wide expression 

levels of gene microarray technology has become a requisite tool [5]. The evaluation of the gene expression 

profiles in a variety of organs which employs microarray technologies disclose separate genes, gene ensembles, 

and the metabolic ways underlying the structural and functional organization of an organ and its physiological 

function [6]. By the employment of microarray technology the diagnostic chore can be automated and the 

precision of the conventional diagnostic techniques can be enhanced. Simultaneous examination of thousands of 

gene expressions is being facilitated by microarray technology [7]. 

Efficient representation of cell characterization at the molecular level is possible with microarray technology 

which simultaneously measures the expression levels of tens of thousands of genes [8]. Gene expression 

analysis [10] [12] that utilizes microarray technology has a broad variety of latent for discovering the biology of 

cells and organisms [9]. Accurate prediction and diagnosis of diseases is been assist by the microarray 

technology.  For envisaging the entire gene structure, mainly the precise exon-intron structure of a gene in a 

eukaryotic genomic DNA sequence gene identification is employed. After sequencing, finding the genes is one 

of the first and most significant steps in knowing the genome of a species [13]. A field of computational biology 

which is involved with algorithmically distinguishing the stretches of sequence, generally genomicDNA that are 

biologically functional is known as gene finding. This in particular not only engrosses protein-coding genes but 

also includes added functional elements for instance RNA genes and regulatory regions [14]. Some of the 

researches on the gene prediction are [15], [16], [17] and [18].  

In this paper, we propose an effective gene prediction technique which predicts the dominant genes. Initially, the 

classified microarray gene dataset (either Acute Myeloid Leukemia (AML) or Acute Lymphoblastic Leukemia 

(ALL)) which is of high dimension is reduced through the Probability Principal Component Analysis (PPCA) to 

generate the training dataset for the neural network. Consequently, through the training data the Feed Forward-

ANN is designed and then the genetic algorithm is utilized to predict the dominant genes of ALL/AML cancer. 

Subsequently the gene which causes either AML or ALL is predicted devoid of analyzing the entire database. 

The rest of the paper is organized as follows. Section 2 details the genetic algorithm and in Section 3, a brief 

review of some of the existing works in gene prediction is presented. The proposed effective gene prediction is 

detailed in Section 4. Section 5 describes the results and discussion. The conclusions are summed up in Section 

6. 
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II. GENETIC ALGORITHM 

 

The heredity and evolution of living organisms are stimulated by computer programs known as Genetic 

Algorithms [27]. By utilizing GAs an ideal solution is possible even for multi modal objective functions because 

they are multi-point search methods. Moreover, GA’s are applicable to distinct problem in the search space. 

Hence, GA is not only very simple to use but also a very powerful optimization tool [28]. Strings are present in 

the search space of GA, each of which represents a candidate solution to the problem and are termed as 

chromosomes. Fitness value is the objective function value of each chromosome. A set of chromosomes along 

with their associated fitness is termed as population. The populations which are generated in an iteration of the 

genetic algorithm are termed as generations [29].  

New generations (offspring) are generated by utilize crossover and mutation techniques. Two chromosomes are 

split by crossover and by taking one split part from each chromosome and combining those two new 

chromosomes are created. A single bit of a chromosome is changed by mutation. The chromosomes with the 

best fitness value calculated for a certain fitness criteria are retained while the other chromosomes are removed. 

The process is repeated until one chromosome has the best fitness value and that chromosome is selected as the 

solution for the problem [30]. 

 

III. REVIEW ON RELATED RESEARCHES 

 

A handful of recent research works available in the literature are briefly reviewed in this section. 

A computational technique for patient outcome prediction was introduced by Huiqing Liu et al. [19]. Two 

extreme types of patient samples were utilized for the training phase of this technique: (1) short-term survivors 

who got an inopportune result in a small period and (2) long-term survivors who were preserving a positive 

outcome after a long follow-up time. These incredible training samples generated a clear platform for 

identifying suitable genes whose expression was intimately related to the outcome. With the assistance of a 

support vector machine the selected extreme samples and the important genes were then integrated in order to 

construct a prediction model. Every validation sample is owed a risk score that falls into one of the special pre-

defined risk groups by employing that prediction model. Several public datasets adapts this technique. In quite a 

few cases as perceived in their Kaplan–Meier curves, patients in high and low risk groups who are rated by the 

suggested technique have obviously clear outcome position. They have also established that for enhancing the 

prediction accuracy, the suggestion of deciding merely extreme patient samples for training is efficient when 

diverse gene selection techniques are employed. 

MiTarget which is a SVM classifier for miRNA target gene prediction was introduced by Kim et al. [20].  It 

employed a radial basis function kernel and was then categorized by structural, thermodynamic, and position-

based features as a similarity measure for SVM features. For the first time, the features were presented and the 

mechanism of miRNA binding was reproduced. When compared with previous tools the SVM classifier has 

created high performance with the assistance of biologically pertinent data set that was attained from the 

literature. The important tasks for human miR-1, miR-124a, and miR-373 was computed by employing Gene 

Ontology (GO) analysis and the importance of pairing at positions 4, 5, and 6 in the 5' region of a miRNA was 

explained from a feature selection experiment. A web interface for the program was also presented by them. 
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Based on the information that a majority of exon sequences have a 3-base periodicity, and intron sequences do 

not have the sole characteristic, a technique to predict protein coding regions was developed by Changchuan Yin 

et al. [21]. By employing nucleotide distributions in the three codon positions of the DNA sequences this 

technique computed the 3-base periodicity and the background noise of the stepwise DNA segments of the 

target DNA sequences. From the trends of the ratio of the 3-base periodicity to the background noise in the 

DNA sequences the exon and intron sequences can be recognized. Case studies on genes from diverse 

organisms illustrated that the proposed technique was an efficient means for exon prediction. 

On the basis of a two-stage machine learning approach a gene prediction algorithm for metagenomic fragments 

was proposed by Hoff et al. [22]. Initially, for extracting the features from DNA sequences, linear discriminants 

were employed for monocodon usage, dicodon usage and translation initiation sites. Secondly, for calculating 

the chance in such a way that the open reading frame encodes a protein and an artificial neural network 

combines these characteristics with open reading frame length and fragment GC-content. This probability was 

employed for categorizing and achieving the gene candidates. By means of extensive training this technique 

formed fast single fragment predictions with fine quality sensitivity and specificity on artificially fragmented 

genomic DNA. Additionally, with high consistency this technique can precisely calculate translation initiation 

sites and distinguish complete genes from incomplete genes. Extensive machine learning techniques were well-

suited for predicting the genes in metagenomic DNA fragments. Specially, the association of linear 

discriminants and neural networks was a very promising one and are believed to be taken into consideration for 

incorporating into metagenomic analysis pipelines. 

Based on the physicochemical features of codons computed from molecular dynamics (MD) simulations an ab 

initio model for gene prediction in prokaryotic genomes was introduced by Poonam Singhal et al. [15]. For 

every codon the model requires a statement of three computed quantities, the double-helical trinucleotide base 

pairing energy, the base pair stacking energy, and a codon propensity index for protein-nucleic acid interactions. 

Fixing these three parameters, for each codon, eases the computation of the magnitude and direction of a 

cumulative three-dimensional vector for any length DNA sequence in all the six genomic reading frames. 

Analysis of 372 genomes containing 350,000 genes has confirmed that the orientations of the gene and non-gene 

vectors were significantly apart and a apparent difference was made probable between genic and non-genic 

sequences at a level comparable to or superior than currently accessible knowledge-based models trained on the 

basis of empirical data, providing a strong evidence for the likelihood of a unique and valuable physicochemical 

classification of DNA sequences from codons to genomes.  

For the genus Aspergillus a program called NetAspGene which is a dedicated, publicly available, splice site 

prediction was developed by Kai Wang et al. [23]. The most widespread mould pathogen that is the gene 

sequences from Aspergillus fumigatus, were employed to build and test their model. Aspergillus encloses 

smaller introns when compared with several animals and plants; and hence to cover both the donor and acceptor 

site information they have applied a larger window size on single local networks for training. NetAspGene was 

applied to other Aspergilli, including Aspergillus nidulans, Aspergillus oryzae, and Aspergillus niger. Valuation 

with independent data sets disclosed that NetAspGene executed significantly better splice site prediction than 

the other available tools.  
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Bayesian kernel was represented for the Support Vector Machine (SVM) by Alashwal et al. [24] so as to predict 

protein-protein interactions. By putting together the probability characteristic of the existing experimental 

protein-protein interactions data, the classifier performances that were amassed from diverse sources could be 

improved. In addition to that, so as to organize more research on the highly estimated interactions, the biologists 

are enhanced with the probabilistic outputs that are attained from the Bayesian kernel. The results have 

illustrated that by employing the Bayesian kernel when compared with the standard SVM kernels, the precision 

of the classifier has been enhanced. Those results have suggested that by means of Bayesian kernel, the protein-

protein interaction could be computed with superior accuracy as when compared to the standard SVM kernels. 

 

IV. PROPOSED DOMINANT GENE PREDICTION USING GENETIC ALGORITHM 

 

Generally, utilization of large gene dataset for disease analysis increases the computation time and degrades the 

performance of the process. Hence, a technique that requires less computational time to predict dominant genes 

is essential. Hence, an efficient technique is proposed to predict the dominant genes of cancer (either AML or 

ALL) from a microarray gene dataset. The three phases involved in the proposed technique are generation of 

training dataset, training through neural network and genetic algorithm based dominant gene prediction. 

Preprocess of dominant gene prediction process is illustrated in Fig. 1 and the feed forward neural network is 

depicted in Fig. 2.   

 

4.1 Preprocess for Dominant Gene Prediction 

The pre processing steps for predicting dominant genes are explained in the following steps. 

 

 

 

 

 

 

 

 

               

Figure1: Preprocessing Steps for Dominant Gene Prediction 

4.1.1Generation of Training Dataset  

In this phase, in order to generate the training set for the ANN, it is essential to generate the possible 

combinations of the gene dataset. The two processes involved in the generation of training dataset are generation 

of possible combinational data and dimensionality reduction  

Possible combinational data are generated by classifying the microarray gene dataset with a lot of combinations 

within the dataset. This combinational data is generated with the intention of making easier the learning process 

for dominant genes prediction. Let  M ij  be the microarray gene dataset, where 10  sNi  

and 10  gNj . Here, sN  represents the number of samples and gN  represents the number of genes 

Microarray gene expression data 

Generation of possible combination 

Dimensionality reduction using PPCA 

Design FF-ANN for classification 
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and the size of  M ij  is given by gs NN  . The number of possible combinational data is calculated as 

follow, 
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The combinational data 
ijcM  has a high dimension of 

''  
g

 
s NN   which has to be reduced so as to be utilized 

in further processing. 

4.1.2 Dimensionality Reduction by PPCA 

The dimension of the 
ijcM must be reduced for the upcoming processes. The dimensionality reduction is done 

utilizing the probabilistic Principal Component Analysis (PCA) and the high dimensional 
ijcM  was converted 

to low dimension. The dimensionality reduced data is utilized as the training dataset for the neural network. We 

reduce the dimensionality using PPCA, which is a PCA that has a probabilistic model for the data. The PPCA 

algorithm which was composed by Tipping and Bishop [25] utilizes a rightly formed probability distribution of 

the higher dimensional data and calculates a low dimensional representation. 

The instinctive attraction of the probabilistic representation is because of the fact that the definition of the 

probabilistic measure allows comparison with other probabilistic techniques, at the same time making statistical 

testing easier and permitting the utilization of Bayesian methods. By making use of PPCA as a generic Gaussian 

density model dimensionality reduction can be achieved. Efficient computation of the maximum-likelihood 

estimates for the parameters connected with the covariance matrix from the data principal components is 

facilitated through dimensionality reduction. The combinational data 
ijcM  of dimension 

''
gs NN  is reduced 

through the PPCA to 
ijcM̂  of dimension

''''
gs NN  . In addition to dimensionality reduction, the PPCA finds 

more practical advantages such as finding missing data, classification and novelty detection [26]. Thus training 

dataset 
ijcM̂  for the ANN is generated with reduced dimension

''''
gs NN  . 

 

4.2 Training Phase: Training Through Feed Forward ANN 

The proposed technique incorporates a multilayer feed forward ANN with back propagation for predicting the 

dominant genes of the AML/ALL cancer. A feed-forward network maps a set of input values to a set of output 

values and can be thought of as the graphical representation of a parametric function. The dimensionality 

reduced microarray gene dataset is utilized for training the feed forward Neutral network with back propagation.  

The single network N  is trained in our proposed approach; the network is for receiving the dimensionality 

reduced gene dataset, and outputs the gene value whether it is ALL/AML.  Hence, the network is configured 

with 
''

gN input units and hidden and an output unit. 

Step 1: As the first step, set the input weights of every neuron, apart from the neurons in the input layer.  
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Step 2: A neural network with 
''

gN input layers, a 
''

gN hidden layers and an output layer are designed. In this 

neural network, 
''

sN  (dimensionality reduced) input neurons and a bias neuron, 
''

gN hidden neurons and a bias 

neuron and an output neuron iy  are presented.   

Step 3: The designed NN is weighted and biased. The developed NN is shown in the Fig.2.  

Step 4: The basis function and the activation function which is chosen for the designed NN are shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: n Inputs One Output Neural Network to Train the Gene Dataset 
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Eq.(2) is the basis function for the for the input layer, where cM̂  is the dimensionality reduced microarray gene 

data, ijw  is the weight of the neuron and   is the bias.  The sigmoid function for the hidden layer is given in 

Eq.(3) and the activation function for the output layer is given in Eq.(4). The basis function given in Eq. (1) is 

commonly used in all the remaining layers (hidden and output layer, but with the number of hidden and output 

neurons, respectively). The output of the ANN is determined is determined by giving it cM̂  as the input.  

Step 5: The learning error is determined for the NN as follows 
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Here, E  is the error in the FF-ANN, D  is the desired output and bY  is the actual output.  

4.2.1 Minimization of Error by BP Algorithm 

The steps involved in training BP algorithm based NN is given below. 

(1) Randomly generated weights in the interval  1,0  are assigned to the neurons of the hidden layer and the 

output layer. But all neurons of the input layer have a constant weight of unity.  

(2) In order to determine the BP error using Eq. (5), the training gene data sequence is given to the NN. Eq. (2), 

Eq. (3) and Eq. (4) show the basis function and transfer function. 

(3) The weights of all the neurons are adjusted when the BP error is determined as follows,  

ijijij www              (6) 

The change in weight ijw  given in Eq. (3) can be determined as   .y. ij Ewij  , where E  is the BP error 

and   is the learning rate, normally it ranges from 0.2 to 0.5.  

(4) After adjusting the weights, steps (2) and (3) are repeated until the BP error gets minimized. Normally, it is 

repeated till the criterion, 1.0E  is satisfied.  

When the error gets minimized to a minimum value it is construed that the designed ANN is well trained for its 

further testing phase and the BP algorithm is terminated. Thus, the neural network is trained by using the 

samples. Then to determine the dominant genes of the ALL/AML cancer the genetic algorithm is applied.  

 

4.3. Testing Phase: Genetic Algorithm Based Dominant Gene Prediction of AML/ALL Cancer 

In the training phase, by means of the training dataset the FF-ANN is designed and the well trained network is 

utilized for predicting the dominant genes in an efficient manner. The genetic algorithm is applied on the 

classified test sequence and then this test sequence is evaluated and the dominant genes are predicted. In this GA 

based dominant gene prediction, initially, the random chromosomes are generated. The random chromosomes 

are the indices of the test sequence which are classified as ALL/AML. The genes are generated without any 

repetition within the chromosome. After generating the chromosomes, the fitness is calculated by providing the 

genes of the chromosome which are the indices as input to the designed FF-ANN. Then, by subjecting the 

chromosomes to the genetic operations, crossover and mutation, newly generated chromosomes are obtained. 

Then the fitness is determined for the newly generated chromosomes. The generated new chromosomes are 

given as input to the designed FF-ANN. The optimal chromosomes are obtained by analyzing the threshold 

value. The process is repeated until optimal gene values are obtained. The process of genetic algorithm to 

predict the dominant gene is depicted in fig.3  

 

 

 

 

 

 

 

 



 

9 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Proposed Genetic Algorithm for Dominant Gene Prediction 

4.3.1 Generation of Chromosomes 

Initially generate pN  number of random chromosomes and the number of genes in each chromosome relies on 

''

gN i.e. number genes in the training dataset. As discussed earlier, the generated genes are the indices of the 

test input sequence.  
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n- Number of genes in the training dataset. 

In eq.7, 
)(k

lD  represents the 
thl  gene of the 

thk  chromosome. These genes are generated without any 

repetition within the chromosomes. Once the pN chromosomes are generated then the fitness function is 

applied on the generated chromosomes  
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4.3.2 Fitness Function 

The fitness of the generated chromosomes is evaluated using the fitness function by giving the chromosomes as 

input to the designed FF-ANN.  
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In Eq. (8), outN  is the network output obtained from the FF-ANN for the 
thk  chromosome and fitN  in Eq. (9) 

is the fitness value of the initially generated chromosomes.  

4.3.3 Crossover and Mutation 

The two point crossover is chosen with the crossover rate of RC  amid diverse kinds of crossovers. Using eq. 

(10) and (11) two points are selected on the parent chromosomes in the two point crossover. The genes that are 

present in between the two points 1cr  and 2cr  are exchanged among the parent chromosomes, hence pN  

children chromosomes are attained. The crossover points 1cr  and 2cr  are determined as follows  

2
3

||
1 

l
cr            (10) 

2
2

||
2 

l
cr            (11) 

The children chromosomes are acquired now and their corresponding gene values are store discretely and their 

corresponding indices from the
)(k

lD are stored in
k

lnewD . Subsequently mutation is executed by employing Eq. 

(9) on the chromosomes that are obtained after crossover. Then, by reinstating mN  number of genes from every 

chromosome with new genes, mutation is achieved. The mN numbers of gene are just genes, which have the 

least outN  (as determined from the Eq. (9)). The arbitrarily generated genes are the replaced genes devoid of 

any recurrence within the chromosome. Then, the selected chromosomes for crossover operation, and the 

chromosomes which are obtained from mutation are combined, hence the population pool is filled up with the 

pN  chromosomes. Then, until a maximum iteration of maxI is reached this process is repeated iteratively. 

4.3.4 Selection of Optimal Solution 

The best chromosomes are selected from the group of chromosomes that is obtained after the process is repeated 

maxI  times. Here, the best chromosomes are the chromosomes which have minimum fitness for both 

ALL/AML which may depend upon the c value. The obtained best chromosomes are used to retrieve the 

corresponding gene values from the test sequence. The gene values of the ALL/AML cancer represented by the 
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indices, which are obtained from the genes of the best chromosomes, are the dominant genes of the ALL/AML 

and they are retrieved in an effective manner. 

 

IV. IMPLEMENTATION RESULTS AND DISCUSSION 

 

The proposed dominant gene prediction technique is implemented in the MATLAB platform (Version 7.10) and 

it is evaluated using the classified microarray gene expression data of human acute leukemias. The standard 

leukemia dataset for training and testing is obtained from [26]. The training leukemia dataset is of dimension 

7192gN  and 38sN . This dimension of the dataset is too high to train the FF-ANN and hence its 

dimension is reduced using PPCA and then the training dataset of dimension 30gN and 38sN  is 

obtained. This training dataset is utilized to design the FF-ANN and then the test input sequence is tested 

through the genetic algorithm. The selected double point crossover points are  81 cr  and 222 cr  with a 

crossover rate 5.0RC  and for mutation 5mN . After the completion of the crossover and mutation 

operations, based on the conditions given in section 4, the optimal chromosomes were obtained. These optimal 

chromosomes are the indices of the ALL cancer test sequence. This process is repeated until it reaches the 

maximum iteration 20max I . The training of FF-ANN is implemented using the Neural Network Toolbox in 

MATLAB. Fig 4 shows the Regression of the designed FF-ANN and the Fig 5 shows the performance of the 

designed FF-ANN. Fig 6 depicts the performance of the ALL test sequence during the testing process and the 

Fig 7 depicts the performance of the AML test sequence during the testing process.  

 

Figure 4: Regression Output of the Designed FF-ANN 
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Figure 5: Performance of BP in training the designed FF-ANN       Figure 6: The performance of ALL 

during the testing process 

 

Figure 7: The Performance of AML During the Testing Process 
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Table 1: The Indices of Dominant Genes, Dominant Genes and their Fitness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once the training process of the FF-ANN is completed, the input sequence either ALL or AML is tested through 

the genetic algorithm and then the dominant gene of either ALL or AML has been obtained. In Fig 6, the 

performance of the ALL input sequence has been tested and the obtained dominant gene based on some criteria 

(mentioned in the section 4) is depicted differently from the regular genes. In Fig 7, the performance of the 

AML input sequence has been tested and the obtained dominant gene based on some criteria (mentioned in the 

section 4) is depicted differently from the regular genes. The table 1 demonstrated the dominant genes of the 

ALL and AML below  

 

VI. CONCLUSION 

 

In this paper, an effective genetic algorithm based method to predict the dominant genes in the ALL/AML 

dataset was discussed. The proposed technique, instead of analyzing the entire database, analyzed only the 

dominant genes and hence it has provided the optimal results. The FF-ANN was designed by means of training 

samples to assess the test sequence in the proposed genetic algorithm. Then, the fitness of the test sequence 

samples was evaluated through the designed FF-ANN. After that, the test input sequence was evaluated and the 

dominant genes were predicted through the genetic algorithm. The obtained fitness of the ALL dominant genes 

through the FF-ANN is 0.4467  and for AML dominant genes is 2.2381 . Table 1 demonstrated the dominant 

genes of the ALL and the AML. 
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