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I. INTRODUCTION 

 

Let A denote the class of functions f(z) of the form 

  (1.1) 

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1} and satisfy the normalization condition f(0) = 

f
0
(0) − 1 = 0. Further, we denote by S the subclass of A consisting of functions of the form (1.1) which are also 

univalent in U. A function f of the form (1.1) is said to be strlike of order α if it satisfies the following condition 

 

and is said to be convex of order α if it satisfies the following condition 

 

The classes of all starlike and convex functions of order α are denoted by S∗(α) and C(α) , respectively, studied 

by Robertson [16], (see also [19]). 

Bharti et al. [1] introduced the subclasses of k-uniformly convex functions of order α and corresponding class of 

starlike functions as follows 

If f ∈ A, 0 ≤ k < ∞ and 0 ≤ α < 1 then f ∈ k − UCV (α), if and only if 

  (1.2) 

For α = 0 the class k − UCV (α) reduce to the class k − UCV introduced and studied by Kanas and Wisniowska 

[7] and for k = 1,α = 0 it reduce to the class uniformly convex functions UCV studied by Goodman [4]. Using 

the Alexander transform we can obtain the class k−Sp(α) in the following way f ∈ k−UCV (α) ⇔ zf
0 ∈ k−Sp(α). 
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For more results on these directions we refer the reader to ([2], [5], [6], [8], [9], [17], [20]) and references 

therein. A function f ∈ A is said to be in the class ) if it satisfies the following inequality 

, 

where 0 ≤ γ < 1, β < 1, τ ∈ C/{0} and z ∈ U. The class ) was introduced by 

Swaminathan [21]. 

Next, we introduce the classes Sλ
∗ 
and Cλ as follows 

                                               (1.3),(1.4) 

From (1.3) and (1.4) it is easy to see that 

. 

The classes Sλ
∗ 
and Cλ were introduced by Ponnusamy and Rønning [10]. 

Very recently, Porwal [12] introduce a power series whose coefficients are probabilities of Poisson distribution 

. 

By ratio test the radius of convergence of above series is infinity. Using the above series they obtain some 

interesting results on certain classes of analytic univalent functions. 

The convolution (or Hadamard product) of two series  and  

g(z) =   is defined as the power series 

. 

Now, we consider the linear operator I(m) : A → A defined by 

. 

In the present paper, motivated by results of [12] and on connections between various subclasses of analytic 

univalent functions by using hypergeometric functions (see [3], [10], [14] , [18]) and by work of ([11], [13], 

[15]) we establish some sufficient conditions for convolution operator I(m)f(z) belonging to the classes k − UCV 

(α), k − Sp(α), Cλ and . 

 

II. MAIN RESULTS 

 

To establish our main results, we shall require the following lemmas. 

Lemma 2.1. ([1]) A function f ∈ A is in k − UCV (α) if it satisfies the following condition 

  (2.1) 

Remark 1. It was also found that the condition (2.1) is necessary if f ∈ A is of the form 

. (2.2) 
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Lemma 2.2. ([1]) A function f ∈ A is in k − Sp(α) if it satisfies the following inequality 

  (2.3) 

The condition (2.3) is necessary for functions of the form (2.2). 

Another sufficient condition is also given for the class k − UCV (α) in [8] which is given by the following way. 

Lemma 2.3. ([7]) Let f ∈ S and have the form (1.1). If for some k, 0 ≤ k < ∞, the 

inequality 

, 

holds, then f ∈ k − UCV . The number 1/k + 2 can not be increased. 

Lemma 2.4. Let f ∈ A be of the form (1.1). If 

                                                   , (2.4) 

then . 

We further note that when f(z) is of the form (2.2), the condition (2.4) is both necessary and sufficient for f ∈ Sλ
∗. 

Lemma 2.5. Let f ∈ A be of the form (1.1). If 

                                               , (2.5) 

then f ∈ Cλ. 

Lemma 2.6. ) is of the form (1.1) then 

. 

Theorem 2.1. Let f ∈ A be defined as in (1.1) suppose that m > 0, k ≥ 0, 0 ≤ α < 1 and 

the inequality 

 

is satisfied then for 1 and 0 ≤ β < 1, I(m)f(z) ∈ k − UCV (α). 

Proof. Since 

. 

To prove that I(m)f(z) ∈ k − UCV (α), from Lemma 2.1, it is sufficient to show that 

                                                               (2.6) 

where 

. 

Now 

, ( using Lemma 2.6) 
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 ( Since 1 + γ (n − 1) ≥ γn) 

 

≤ 1 − α 

by the given hypothesis. 

This completes the proof of Theorem 2.1.   

Theorem 2.2. Let f ∈ A be defined as in (1.1) suppose that m > 0, k ≥ 0, 0 ≤ α < 1 and 

the inequality 

 

is satisfied then for 1 and 0 ≤ β < 1, I(m)f(z) ∈ k − Sp(α). 

Proof. The proof of this theorem is much akin to that of Theorem 2.1 so we omit the details 

involved.   

Theorem 2.3. Let m > 0 be such that 

 

is satisfied then for 1 and λ > 0, I(m)f(z) ∈ Sλ
∗. 

Proof. To prove that I(m)f(z) ∈ Sλ
∗, from Lemma 2.4 it is sufficient to prove that 

 

where 

. 

Since ) using Lemma 2.6 and 1 + γ(n − 1) ≥ γn we need only to show that 

 

Now 
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by the given hypothesis. 

Thus the proof of Theorem 2.3 is complete. 

 Theorem 2.4. Let m > 0 and the inequality 

 

is satisfied then for 1 and λ > 0, I(m)f(z) ∈ Cλ. 

Proof. The proof is similar to that of Theorem 2.3 therefore we omit the details. 

Theorem 2.5. Let m > 0. If for k ≥ 0, 0 ≤ α < 1 and the inequality 

 

is satisfied then I(m)f(z) maps f(z) ∈ S of the form (1.1) into k − UCV (α). 

Proof. Let f(z) ∈ S be of the form (1.1). In view of Lemma 2.1 it is enough to show that 

 

Now 

 

≤ 1 − α 

by the given hypothesis. 

Thus the proof of Theorem 2.5 is established.   

Theorem 2.6. Let m > 0 if for k ≥ 0, 0 ≤ α < 1 and the inequality 

  (2.7) 

then I(m)f(z) maps f(z) ∈ S of the form (1.1) into k − Sp(α). 

Proof. The proof of this theorem is much akin to that of Theorem 2.5. Therefore we omit 
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the details involved.   

Theorem 2.7. Let m > 0, λ > 0 and the inequality 

 

is satisfied then I(m)f(z) maps f(z) ∈ S of the form (1.1) into Cλ. 

Proof. The proof of this theorem is similar to that of Theorem 2.3. Therefore we omit the 

details involved.   

 

III. AN INTEGRAL OPERATOR 

 

In the following theorem, we obtain analogues results in connection with a particular integral operator G(m,z) 

which is defined as follows 

                                                                                                  (3.1)   

Theorem 3.1. Let f be defined by (1.1) is in the class ) with m > 0 and the inequality 

 

is satisfied then G(m,z) defined by (3.1) is in the class k − UCV (α). 

Proof. Since 

. (3.2) 

To prove it in k − UCV (α), we have to show that 

 

≤ 1 − α 

by the given hypothesis. 

This completes the proof of Theorem 3.1.   

Theorem 3.2. Let f be defined by (1.1) in the class S with m > 0 and the inequality (2.7) is satisfied then 

G(m,z) defined by (3.1) is in k − UCV (α). 

Proof. Since 

. (3.3) 

To prove that G(m,z) ∈ k − UCV (α), we have to show that 

 

Using the well-known inequality |an| ≤ n and proceeding the previous theorem we obtain the required condition. 
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The proof of following Theorems 3.3-3.5 are similar to Theorem 3.1 therefore we only state these theorems. 

Theorem 3.3. Let f be defined by (1.1) in the class S with m > 0 and the inequality 

(k + 1)me
m 

≤ 1 − α 

is satisfied then G(m,z) is in the classk − Sp(α). 

Theorem 3.4. Let f be defined by (1.1) in the class S with m > 0 and the inequality 

me
m 

≤ λ 

is satisfied then G(m,z) is in the classS∗(λ). 

Theorem 3.5. Let f be defined by (1.1) in the class S with m > 0 and the inequality 

 

is satisfied then G(m,z) is in the classC(λ). 
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