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ABSTRACT   

The physical characteristics of watershed play a vital role in generating runoff and significantly affect the 

hydrological behavior of the watershed. The future performance of this hydrological behavior of watershed can 

be predicted by conceptually modellin.  But, in the conceptual rainfall-runoff modelling, finding the value of 

conceptual model parameters is a challenging task particularly in ungauged basins or basins where very less 

measurements are available. Hence, it has been the endeavor of many hydrologists to quantify and relate 

geomorphological characteristics of ungauged watersheds to their hydrologic response characteristics. Very 

recently developed Jain et al.(2012) Modified Long Term Hydrologic Simulation Advance Soil Moisture 

Accounting (MLTHS ASMA) 15-parameters model performed better than the existing LTHS models to simulate 

total stream flow, but for its pragmatic application, it is required to correlate model parameters with some 

measurable physical characteristics of the watersheds. Therefore, in the present study, the measurable physical 

characteristics of the seventeen watersheds lying in various agro-climatic zones of India are correlated with 

model parameters using step-wise backward elimination procedure via p-value of F-statistic of multiple 

regression analysis. In the majority cases of the watershed under study, the model parameters exhibited a 

significant relationship with physical characteristics of the watersheds.  

 

Keywords: Advance Soil Moisture Accounting, Geomorphological Characteristics, Hydrologic 

Modeling, Runoff, Watershed. 

 

I. INTRODUCTION 

 

The conceptual rainfall-runoff models generally involves certain parameters relating to watershed characteristics 

such as size, shape, orientation, topography, geology, geomorphology, land use and soil characteristics etc. play 

very important role in generating runoff and affect significantly the hydrological response of a watershed. 

Finding the value of these parameters is a challenging task particularly in ungauged basins or basins where very less 

measurements are available. Hence, it has been the endeavor of many hydrologists to quantify and relate 

geomorphological parameters of these watersheds to their hydrologic response characteristics (Chandra, 1993). As 

such, Horton (1945) pioneered the hydro-geomorphologic analysis of watershed and provided a rational and 

systematic base, rather a framework of outlines of geomorphological characteristics to relate them to various 

hydrological properties of the watershed. Strahler‟s (1952) modification of this technique has generally been adopted 

for use in hydrologic study. Potter (1953) and Benson (1962) related peak discharge to watershed area, a 
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topographical factor, and a rainfall frequency factor. Boyd (1978) developed a conceptual model using watershed 

geomorphological properties. Using a probabilistic framework, Rodrguez-Iturbe and Valdes (1979) and Gupta et 

al. (1980) presented a geomorphological instantaneous unit hydrograph with the exponential probability 

distribution for the time of travel of water drops which is essentially equivalent to using a linear reservoir. Rosso 

(1984) derived the Nash IUH parameters as functions of Horton's ratios. Hydro-geomorphological analysis was 

carried out in a number of Indian watersheds to compute the runoff in water resources development and 

management projects (Roohani and Gupta, 1988; Karnieli et al. (1994); Chalam et al., 1996; Chaudhary and 

Sharma, 1998; Hsieh and Wang (1999); Kumar et al., 2001; Ali and Singh, 2002; Durbude and Kumar, 2002; 

Durbude (2004); Singh et al., 2003; Suresh et al., 2004; Durbude, 2005; Durbude and Chandramohan, 2007; 

Dabral and Pandey, 2007; etc.). 

A general fact is that the model containing too many parameters for simulation of limited components of 

hydrological processes exhibit difficulty in field applications. Usability of a model can be enhanced if its 

parameters can be related to measurable catchment characteristics. The physical characteristics of the 

watersheds which are measurable entities and influencing the runoff characteristics of watershed can be 

correlated with the model parameters by means of some techniques such as regression analysis.  In regression 

analysis, investigations are made to relate dependent variable (Y) for example model parameters to independent 

predictors (Xs) such as physical characteristics of watershed. It can be used for modeling causal relationships 

between model parameters and physical characteristics of watershed.  

Therefore, in the present study, parameters of the recently developed long term hydrological simulation Jain el 

al. (2012) MLTHS ASMA model is correlated with the measurable physical characteristics of the watershed by 

using the multiple regression technique. 

 

II. MATERIAL AND METHODS 

 

2.1 Existing MLTHS ASMA Model  

The existing MLTHS ASMA model proposed by Jain et al. (2012) is primarily based on the physical concepts 

that describe water movement through a watershed; the total runoff of the catchment is quantified by 

incorporating sub-modules for direct surface runoff, lateral flow, and base flow. The accounting for soil 

moisture and ground water store is considered on daily basis. The initial soil moisture store level is used to 

calculate the space available for water retention, which is updated on daily basis using evapotranspiration, 

drainage from soil moisture store and level of soil moisture. Direct surface runoff is computed using modified 

formulation of the Soil Conservation Service Curve Number (SCS-CN) method given by Michel et al. (2005) 

and Durbude et al. (2011). The sub-surface drainage flow is modeled using the formulations based on concepts 

given by Yuan et al. (2001) for computation of the sub-surface drainage flow (Jain et al., 2012). Jain et al. 

(2012) MLTHS ASMA model uses the ASMA procedure both for surface and sub-surface flow components by 

formulating sub-surface drainage flow component based on the modification in SCS-CN method through 

theoretical analogy. As this model operates on daily time step, it requires daily rainfall as input and the observed 

runoff is used only to calibrate parameters of the model and its validation.  

The mathematical formulations for computation of the surface flow and sub-surface flow components and losses 

(such as evapotranspiration and deep percolation) involved in the MLTHS ASMA (Jain et al., 2012) model are 

again reproduced here, as follows. 
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2.1.1 Surface Flow Components 

The surface flow, which occurs only when the rainfall rate is greater than the rate of infiltration. It is modeled 

using the ASMA procedure proposed by Durbude et al. (2011), in which soil moisture store at time t is 

computed by using equation 1 as (Michel et al., 2005); 

tttt ROPVV 
)(0           (1) 

where V0(t) is  initial soil moisture store level (mm) at time „t‟, Pt is accumulated rainfall at time „t‟ along a storm 

(mm), ROt is direct runoff at time „t‟ along a storm (mm), and Vt is soil moisture store level at time „t‟, i.e. when 

the accumulated rainfall is equal to Pt (mm).  

The direct surface runoff (RO), a component of surface flow can be computed based on AM (Durbude et al., 

2011) as;   
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In this model, it was assumed that the current space available for water retention (St) is constant for the first 5 

days of simulation. The value of St for the first day of simulation (St=S0) is computed from Eq. (5) by using the 

initial value of CN (i.e. CN0 to be determine by optimization). Afterwards, St is modified based on antecedent 

moisture (AM) into modified water retention (SMt) to avoid the sudden variation in the daily curve number that 

may affect the performance of model (Geetha et al., 2007; Durbude et al., 2011) as follows; 

)(

)( 2

tt

t

t
SAM

S
SM


           (5) 

Where AM can be computed using the following expression. 

)(5 tt PAM            (6) 

Here P5(t) is the 5 days antecedent rainfall at time „t‟ and δ is the coefficient of antecedent moisture to be 

determined by optimization.  

 

The next parameter Sa (Eqs.7-9) is set as a fraction of S (as per the Michel et al., 2005), as follows; 

tt
SS 

)(a            (7) 

Where α is a parameter (fraction) of Sa, which is treated as calibration parameter and obtained through 

optimization. 

Similarly, the initial soil moisture store level (V0) can be computed as follows (Durbude et al., 2011); 

If ,
)(5)(a)(00 ttt

PSV  then  
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V0(t) = V00(t) + β (P5)t          (8)
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Where β is a model parameter obtained through optimization, and V00 is pre-antecedent moisture level defied as 

(Durbude et al., 2011) 

V00(t) =  γ SMt           (11)  

Here γ ranges from 0.0 to 1.0 and can be obtained by optimization.  

2.1.2 Routing of Direct Runoff 

The direct surface runoff ROt (Eqs. 7-9) is routed using a single linear reservoir to produce the surface runoff 

(SROt) at the outlet of the basin after the number of days exceeds 5 (Nash, 1957) to account for catchment 

induced storage effects as follows;  

SROt = C0 . ROt + C1 . RO(t-1) + C2 . SRO (t-1)           (12) 

Where 
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K is the storage coefficient determined from optimization. In linear reservoir routing, the amount of attenuation 

is a function of Δt/K. Values of Δt/K greater than 2 can lead to negative attenuation, therefore due care was 

taken during optimization to restrict value of Δt/K to not to exceed 2. 

2.1.3 Evapotranspiration 

Evapotranspiration (ET) is the amount of water that goes back or lost to the atmosphere. It is the combination of 

evaporation from the soil surface and transpiration from the vegetation and can be obtained by the summation of 

daily evaporation from the water bodies and transpiration from the soil zone in the watershed. Since, in the 

evapotranspiration process, the transpiration process is more dominant than evaporation process, hence, the 

evapotranspiration is assumed equivalent with transpiration and expressed as follows: 

ETt = P1 . (θt - θw)          (16) 

Where P1=coefficient of transpiration from soil zone, θt = soil moisture at time„t‟, θw = wilting point of the soil. 

2.1.4 Sub-Surface Flow Components 

Sub-surface flow occurs beneath the ground surface, when infiltrated rainfall meets an underground zone of low 

transmission and travels above the zone to the soil surface downhill, and appears as a seep or spring. In this 
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model, the expression for sub-surface drainage flow (DRt) at time„t‟ is derived based on theoretical analogy 

(Yuan et al., 2001) as follows; 
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The Eq. (22) is valid for (Pt – 
)(a t

S + V0(t)  –  SROt) ≥ Id(t);  DRt = 0, otherwise. Here,    

Id(t) = λd . Sd(t)           (18 

Sd(t) = 254
25400
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          (19) 

Id is initial abstraction in saturated zone at time„t‟; λd is coefficient of initial abstraction in saturated zone (Id); 

Sd(t) is potential maximum retention in saturated zone at time „t‟; and CNd(t) is curve number for sub-surface 

(drainage) flow at time „t‟.  

The sub-surface drainage flow is further partitioned into two components: (i) sub-surface drainage flow in 

lateral direction as lateral flow and (ii) sub-surface drainage flow in vertical direction as percolation into ground 

water zone.  

2.1.4.1 Lateral Flow  

Fraction of sub-surface drainage flow moving in lateral direction (Putty and Prasad, 1994, 2000) is given as: 

THRt = P3 . DRt          (20) 

Where THRt is lateral flow at time „t‟ and P3 is unsaturated soil zone runoff coefficient.  

The remaining portion of sub-surface drainage flow moving in the vertical direction to meets the ground water 

store (GWS) due to the permeability of the soil is considered as percolation and modeled as follows (Mishra et 

al., 2005, Putty and Prasad, 1994, 2000): 

PRt = (1 – P3) . DRt          (21) 

Where PRt = percolation at time „t‟. 

The saturated store GWS is considered as a non-linear reservoir from which the outflow occurs at an 

exponential rate in the form of deep seepage as follows: 

DSPt = ( t –   f)
 Eg

          (22) 

Where DSPt = deep seepage at time „t‟,  t = ground water at time „t‟,  f = field capacity of the soil in the 

ground water zone and Eg = exponent of ground water zone 

The deep seepage which travels in lateral as well as vertical direction through GWS is further bifurcated into 

active ground water flow (base flow) and inactive ground water flow (deep percolation) into the aquifers. 

2.1.4.2 Base Flow  

The base flow (BFt) or delayed flow, which is an active ground water flow, is modeled as outflow from a non-

linear storage as follows:  

BFt = P4. DSPt           (23) 

Where P4=ground water zone runoff coefficient. 

The inactive sub-surface flow into aquifers is termed as deep percolation and occurs from the saturated ground 

water zone in vertical direction, and is considered as a loss from the saturated store which is modeled as: 

DPRt = (1 – P4) . DSPt          (24) 



International Journal of Advanced Technology in Engineering and Science                 www.ijates.com  

Volume No 03, Special Issue No. 01, March 2015                          ISSN (online): 2348 – 7550  

33 | P a g e  

Where DPRt = deep percolation at any time „t‟ and P4 = ground water zone runoff coefficient. Here, it is worth 

emphasizing that the proposed model considers deep seepage which is partitioned into two components, base 

flow and deep percolation.  

2.1.5 Total Stream Flow  

The total stream flow (TROt) at time„t‟, is the sum of the surface runoff, lateral flow, and base flow (Eqs. 4, 17, 

25, and 28).  

TROt = ROt + THRt + BFt  if t ≤ 5 days      (25) 

TROt = SROt + THRt + BFt  if t > 5 days      (26) 

The daily water balance can be maintained by daily water retention storage or soil moisture budgeting from both 

the SMS and GWS by defining the lower and upper limits of wilting point and field capacity of the soil. The 

current space available for retention of water St in unsaturated zone and Sd(t) in saturated zone is upgraded on 

daily basis by taking into account the changes in SMS and GWS as: 

)1()1(1   tttttt SS          (27) 

)1()1()()1(   tttttdtd SS         (28) 

were, S(t+1) is the next day‟s potential maximum retention (mm); Sd(t+1) is the next day‟s potential maximum 

retention (mm) in saturated zone;  (t+1) is the next day‟s soil moisture (mm); )1( t is the next day‟s ground 

water (mm). The soil moisture store (SMS) and ground water store (GWS) are upgraded on daily basis as: 

tttttt DRETVV  )(0)1(          (29) 

 ttttt DPRBFPR  )()1( 
                                   (30) 

 

2.2 Multiple Regression Technique 

In the multiple regression, the multiple correlation coefficient (R) is Pearson's product moment correlation 

between the predicted values (Y') and the observed values (Y). Just as coefficient of determination (r²) is the 

proportion of the total variance (s²) of Y that can be explained by the linear regression of Y on X, R² is the 

proportion of the variance explained by multiple regressions. The significance of R can be tested by the F-

statistic of the analysis of variance for the regression. The basic idea is to select the most significant regression 

equation, which corresponds to the minimum p-value of F-test. In regression analysis, selecting variables is very 

important. As a matter of fact, the first problem that has to be solved in practice is to determine which variables 

should be included in the model. Obviously, the goodness of regression model depends on the selection of 

variables. How to select variables that can yield the best regression equation? Aitkin (1974) defined a class of 

"adequate" regression equations, characterized by a lower bound on the multiple correlation coefficients. Here 

"adequate" means that each member of the class is not significantly poorer than the complete equation. As 

Aitkin pointed out, this does not solve the problem of finding the "best" equation for prediction. Besides, 

Spjotvoll (1972) constructed a multiple comparison method, which usually gives a set of many equations none 

of which is significantly better than any other. Many criteria have been presented by Draper and Smith (1981) 

for the selection of the “best” regression equation, but none of these has been considered as the best one. Using 

different criteria, one gets different (the "best") regression equations. Among these criteria are residual mean 

square (s
2
), adjusted multiple correlation coefficient (R), Cp-statistic (Mallows, 1964) and so on.  In order to 

develop a good model based on these criteria, it is necessary to select the best subset.  
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2.2.1 Best Subset Selection  

A problem arises frequently in multiple regression analysis how to predict the value of a dependent variable 

when there are a number of variables available to choose as independent variables. Though the high speed of 

modern algorithms is available to perform the multiple linear regression calculations, it is tempting to select a 

subset instead of just using all the variables in the model. It is always better to make predictions with models 

that do not include irrelevant variables. Dropping independent variables that have small (non-zero) coefficients 

will improve the predictions as it will reduce the mean square error (MSE). Hence, there is a need for selecting 

subset of the independent parameters to correlate with the dependant parameters. There are several methods for 

selecting a subset of predictors that produce the "best" regression. Many statisticians discourage general use of 

these methods because they can detract from the real-world importance of predictors in a model. Examples of 

predictor selection methods are step-up selection, step-down selection, stepwise regression, and best subset 

selection. The fact that there is no predominant method indicates that none of them are broadly satisfactory 

(Draper and Smith, 1998). 

2.2.2 Algorithms for Subset Selection 

Selecting subsets to improve MSE is a difficult computational problem for large number of independent 

variables. The most common procedure for more than 20 independent variables is to use heuristics to select 

“good” subsets rather than to look for the best subset for a given criterion. The heuristics most often used and 

available in statistics software are step-wise procedures. There are three common procedures: forward selection, 

backward elimination, and step-wise regression (Draper and Smith, 1998). In forward selection procedure, the 

variables are kept on adding one at a time to construct what we hope is a reasonably good subset (Draper and 

Smith, 1998). Starting with constant term only in subset, compute the reduction in the sum of squares of the 

residuals (SSR) obtained by including each variable that is not presently in S. For the variable, say, i that give 

the largest reduction in SSR compute as: 


)(

)()(
2 iS

iSSSRSSSR
MaxF Sii








 

        (31) 

If Fi > Fin, where Fin is a threshold (typically between 2 and 4) add i to S. Repeat until no variables can be 

added. 

The backward elimination started with all variables in S. Compute the increase in the sum of squares of the 

residuals (SSR) obtained by excluding each variable that is presently in S (Draper and Smith, 1998). For the 

variable, say, i that give the smallest increase in SSR compute as: 

 )()(

)(2

SSSRiSSSR

S
MinF Sii


 



        (32) 

If Fi < Fout, where Fout is a threshold (typically between 2 and 4) then drop i from S. Repeat until no variable 

can be dropped. Backward Elimination has the advantage that all variables are included in S at some stage. This 

addresses a problem of forward selection that will never select a variable that is better than a previously selected 

variable that is strongly correlated with it. The disadvantage is that the full model with all variables is required 

at the start and this can be time-consuming and numerically unstable. 

The step-wise regression procedure is like forward selection except that at each step we consider dropping 

variables as in backward elimination. Convergence is guaranteed if the thresholds Fout and Fin satisfy: Fout < 

Fin. It is possible, however, for a variable to enter S and then leave S at a subsequent step and even rejoin S at a 

http://www.statsdirect.com/help/references/refs.htm
http://www.statsdirect.com/help/references/refs.htm
http://www.statsdirect.com/help/references/refs.htm
http://www.statsdirect.com/help/references/refs.htm
http://www.statsdirect.com/help/references/refs.htm
http://www.statsdirect.com/help/references/refs.htm
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yet later step. As stated above these methods pick one best subset. There are straightforward variations of the 

methods that do identify several close to best choices for different sizes of independent variable subsets.  

None of the above methods guarantees that they yield the best subset for any criterion such as adjusted R
2
. 

These are reasonable methods for situations with large number of independent variables. Hence, in the present 

study, stepwise multiple regressions with p-value of F-statistic were followed to select the best subset of various 

combinations of measurable characteristics of study watersheds by using EXCEL 2007: Multiple regression and 

statistical software, namely SYSTAT. 

2.2.3 Stepwise Multiple Regression  

Stepwise regression was introduced by Efroymson (1960). This method is an automated procedure used to select 

the most statistically significant variables from a large pool of explanatory variables. The method does not take 

into account industrial knowledge about the process, and therefore, other variables of interest may be later added 

to the model, if necessary. If properly used, the stepwise regression option in EXCEL 2007 and SYSTAT (or 

other stat packages) puts more power and information than does the ordinary multiple regression option, and it 

is especially useful for shifting through large number of potential independent variables and/or fine-tuning a 

model by poking variables in and/or out. If improperly used, it may converge on a poor model while giving a 

false sense of security. The stepwise regression option either begins with no variables in the model or proceeds 

forward (adding one variable at a time) or start with all potential variables in the model and proceed backward 

(removing one variable at a time). At each step, the SYSTAT program performs various calculations via for 

each variable currently in the model, it computes the t-statistic for its estimated coefficient, squares it, and 

reports this as its "F-to-remove" statistic; for each variable not in the model, it computes the t-statistic that its 

coefficient would have if it were the next variable added, squares it, and reports this as its "F-to-enter" statistic. 

At the next step, the program automatically enters the variable with the highest F-to-enter statistic or removes 

the variable with the lowest F-to-remove statistic in accordance with certain control parameters that have been 

specified. Under the forward method, at each step, it enters the variable with the largest F-to-enter statistic, 

provided that this is greater than the threshold value for F-to-enter. When there are no variables left to enter 

whose F-to-enter statistics are above the threshold, it checks to see whether the F-to-remove statistics of any 

variables added previously have fallen below the F-to-remove threshold. If so, it removes the worst of them, and 

then tries to continue. It finally stops when no variables either in or out of the model have F-statistics on the 

wrong side of their respective thresholds. The backward method is similar in spirit, except it starts with all 

variables in the model and successively removes the variable with the smallest F-to-remove statistic, provided 

that this is less than the threshold value for F-to-remove. Whenever a variable is entered, its new F-to-remove 

statistic is initially the same as its old F-to-enter statistic, but the F-to-enter and F-to-remove statistics of the 

other variables will generally all change. Similarly, when a variable is removed, its new F-to-enter statistic is 

initially the same as its old F-to-remove statistic. Until the F-to-enter and F-to-remove statistics of the other 

variables are recomputed, it is impossible to tell what the next variable to enter or remove will be. Hence, this 

process is myopic, looking only one step forward or backward at any point. There is no guarantee that the best 

model that can be constructed from the available variables (or even a good model) will be found by this one-

step-ahead search procedure. Hence, when the procedure terminates, one should study the sequence of variables 

added and deleted, think about whether the variables that were included or excluded make sense. For example, 

the variable with the lowest F-to-remove or highest F-to-enter may have just missed the threshold value, in 

which case one may wish to tweak the F-values and see what happens. Sometimes adding a variable with a 
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marginal F-to-enter statistic, or removing one with a marginal F-to-remove statistic, can cause the F-to-enter 

statistics of other variables not in the model to go up and/or the F-to-remove statistics of other variables in the 

model to go down, triggering a new chain of entries or removals leading to a very different model. The selection 

of stepwise forward or backward multiple regression method depends on the set of independent variables. If a 

very large set of potential independent variables is available from which one has to extract a few, i.e. one is on 

fishing expedition, one should generally go forward. On the other hand, if one has a modest-sized set of 

potential variables from which one wishes to eliminate a few, i.e. one is fine-tuning some prior selection of 

variables, one should generally go backward. As noted above, after SYSTAT completes a forward run based on 

the F-to-enter threshold, it takes a backward look based on the F-to-remove threshold, and vice versa. Hence, 

both thresholds come into play regardless of which method are using, and the F-to-enter threshold must be 

greater than or equal to the F-to-remove threshold (to prevent cycling). Usually the two thresholds are set to the 

same value. Keeping in mind that the F-statistics are squares of corresponding t-statistics, an F-statistic equal to 

4 would correspond to a t-statistic equal to 2, which is the usual rule-of-thumb value for "significance at the 5% 

level." (4 is the default value for both thresholds.). It is always better using a somewhat smaller threshold value 

than 4 for the automatic phase of the search-for example 3.5 or 3.  Since the automatic stepwise algorithm is 

myopic, it is usually OK to let it enter a few too many variables in the model, and then one can weed out the 

marginal ones later on by hand. However, beware of using too low an F-threshold if the number of variables is 

large compared to the number of observations or if there is a problem with multicollinearity in data. 

 

III. RESULTS AND DISCUSSION 

 

The optimized values of parameters of MLTHS ASMA (Jain et al., 2012) model applied to the daily data of 

rainfall and stream flow of the 17 watersheds varying in size/shape, physical properties and situated in different 

agro-climatic zones of India are presented in Table 1.  

Table 1. Optimized Values of Parameters of MLTHS ASMA (Jain et al. 2012) Model 

Sr. 

No. 

Name of 

Watershed 

 Model Parameters 

CN0 δ α β γ K P1 P3 P4 θw ψf Es ψ0 CNd0 λd 

1. Hemavati 30.5 2.33 0.41 0.14 0.44 1.52 0.01 0.11 0.99 40.3 300.0 0.32 300.3 64.7 0.01 

2. Hridaynagar 27.5 0.01 0.54 0.01 0.52 1.23 0.04 0.00 0.59 299.7 496.2 0.26 253.6 60.7 0.01 

3. Mohegaon 37.0 0.05 0.46 0.01 0.50 5.00 0.03 0.60 0.16 119.7 395.3 0.32 469.4 58.3 0.07 

4. Manot 35.3 6.63 0.85 0.00 0.95 3.02 0.02 0.60 0.48 298.9 413.8 0.36 377.1 56.6 0.57 

5. Amachi 17.4 0.10 0.40 0.02 0.42 2.00 0.01 0.20 0.44 80.0 310.0 0.34 242.9 32.3 0.02 

6. Anthrolli 28.6 4.92 0.43 0.01 0.46 1.69 0.01 0.39 0.10 220.0 259.8 0.54 358.8 78.2 0.13 

7. Attigundi 20.0 0.02 0.45 0.001 0.58 5.98 0.05 0.24 0.98 162.5 373.9 0.38 199.4 44.8 0.26 

8. Barchi 38.1 0.01 0.53 0.01 0.54 2.00 0.01 0.35 0.50 148.9 279.2 0.38 551.5 55.4 0.09 

9. Khanapur 11.3 0.14 0.46 0.02 0.57 3.18 0.01 0.60 0.99 179.9 405.0 0.50 198.3 18.3 0.15 

10. Hirehalla 14.6 0.06 0.48 0.10 0.50 2.07 0.09 0.80 0.06 130.3 300.0 0.49 350.0 35.8 0.03 

11. Sagar 21.4 0.21 0.50 0.01 0.54 0.64 0.01 0.59 0.54 45.5 400.0 0.90 191.0 50.8 0.09 

12. Sorab 52.8 0.13 0.53 0.01 0.61 1.63 0.01 0.50 0.84 105.0 302.3 0.40 397.0 51.9 0.05 

13. Dasanakatte 15.6 0.11 0.59 0.24 0.61 0.76 0.00 0.40 0.99 123.6 399.9 0.38 394.4 20.4 0.02 

14. Haladi 25.6 0.02 0.56 0.23 0.60 1.66 0.01 0.47 0.99 103.8 400.0 0.35 389.1 37.1 0.05 

15. Jadkal 30.8 0.98 0.47 0.34 0.53 0.53 0.05 0.48 0.99 160.0 400.0 0.39 405.7 42.2 0.06 

16. Kokkarne 15.8 4.99 0.57 0.18 0.56 2.06 0.00 0.55 0.99 127.4 407.9 0.30 220.2 25.9 0.01 

17. Halkal 26.5 0.01 0.65 0.30 0.66 1.34 0.01 0.47 0.99 240.0 262.9 0.38 303.4 33.5 0.01 
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As stated earlier, the geomorphological characteristics of the watersheds that significantly affect the runoff are 

geographical area, length, slope, shape, land use, and soil characteristics of watershed. The various 

geomorphological characteristics of study watersheds were extracted from the Survey of India (SOI) toposheets. 

The toposheets were scanned and projected into Universal Traverse Mercator (UTM) projection system into 

zone (43-in which the study area lies), using Everest (India, 1956) Ellipsoid and Everest (India, Nepal) datum 

using image processing utilities of Integrated Land and Water Information System (ILWIS) software. The 

rectified toposheets were further used for the delineation of different features in the study watersheds like 

contour lines and drainage networks etc. The base map of the watershed boundary at 1:50,000 scale was 

prepared using the location of various contour and drainage lines. Different thematic maps, viz., contour map 

and drainage map were prepared using the base map. Digital Elevation Models (DEMs) were created using the 

contour maps, which were further used for the assessment of relief aspects. The mathematical expressions given 

by various researchers such as Horton (1945), Miller (1953), and Schum (1956) were used to compute 

geomorphological characteristics of watershed as shown in Table 2.  

 

Table 2. Geomorphological Characteristics of Study Watersheds 

Sr. 

No. 

Name of  

Watershed 

Geomorphological characteristics of the watershed 

Area 

 

(A) 

Perimeter 

 

(P) 

 Length 

 

(Lb) 

Hydrologic 

length 

(Lm) 

Form 

factor 

(Rf) 

Circulatory 

ratio 

(Rc) 

Elongation 

ratio 

(Re) 

Total 

relief  

(H) 

Vegetation 

  

(V) 

(Km2) (Km) (Km) (Km)    (m) (%) 

1 Hirehalla 1296.00 162.23 55.49 51.31 0.42 0.62 0.73 150 6 

2 Hridaynagar 3370.00 402.42 182.92 215.20 0.10 0.26 0.36 228 65 

3 Amachi 87.00 33.74 11.28 11.51 0.68 0.96 0.93 224 70 

4 Barchi 4661.00 326.97 148.62 174.85 0.21 0.55 0.52 391 58 

5 Mohegaon 14.50 20.81 8.18 8.60 0.22 0.42 0.53 254 94 

6 Anthroli 503.00 98.21 35.47 24.23 0.40 0.66 0.71 246 57 

7 Manot 5032.00 503.03 228.65 269.00 0.10 0.25 0.35 660 35 

8 Sorab 96.00 45.30 15.81 24.61 0.38 0.59 0.70 266 60 

9 Khanapur 320.00 143.74 30.83 48.08 0.34 0.19 0.65 146 63 

10 Sagar 75.00 33.56 11.84 10.92 0.54 0.84 0.83 108 55 

11 Attigundi 4.51 8.81 3.47 2.34 0.37 0.73 0.69 188 85 

12 Hemavati 600.00 127.35 57.89 55.13 0.18 0.46 0.48 350 12 

13 Kokkarne 343.00 116.94 34.35 53.17 0.29 0.32 0.61 1147 82 

14 Halkal 108.00 48.23 18.39 17.64 0.32 0.58 0.64 1101 92 

15 Dasanakatte 135.00 57.95 19.92 28.56 0.34 0.50 0.66 869 92 

16 Jadkal 90.00 39.45 13.12 18.75 0.52 0.73 0.82 1142 85 

17 Haladi 505.00 105.07 34.79 42.75 0.05 0.57 0.73 968 87 

 

The multiple regression analysis was carried out to develop the relation between the MLTHS ASMA model 

parameters and the geomorphological characteristics of the watershed. For this purpose, the regression matrix 

was prepared to have an idea about the poorly correlated geomorphological characteristics of study watersheds 

with model parameters as shown in Table 3. This analysis helps to take decision for carrying out multiple linear 

regression analysis. The multiple regressions were performed using the Data Analysis Add-in facilities of 

EXCEL 2007. The regression matrix (Table 3) was used for choosing the best subset of the watershed 
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characteristics to correlate with model parameters. Since EXCEL 2007 has limited facilities and required several 

trials to select the  

 

Table 3. Regression Matrix between MLTHS ASMA Model Parameters and Geomorphological 

Characteristics of Study Watersheds 

Sr.  

No.  

Model 

Parameters  

Regression coefficient (r2) 

A P Lb Lm Rf Rc Re H V 

1 CNd0 0.178 0.146 0.196 0.145 0.090 0.001 0.170 0.089 0.175 

2 α 0.181 0.261 0.244 0.264 0.307 0.366 0.293 0.218 0.003 

3 β 0.160 0.154 0.149 0.138 0.000 0.022 0.057 0.628 0.168 

4 γ 0.171 0.221 0.212 0.238 0.300 0.310 0.280 0.131 0.000 

5 δ 0.014 0.024 0.025 0.022 0.079 0.027 0.016 0.001 0.024 

6 P3 0.001 0.003 0.014 0.010 0.034 0.004 0.075 0.005 0.012 

7 P4 0.173 0.093 0.101 0.068 0.048 0.071 0.003 0.281 0.191 

8 K 0.032 0.079 0.060 0.060 0.124 0.166 0.073 0.127 0.060 

9 P1 0.041 0.029 0.026 0.017 0.011 0.014 0.001 0.043 0.120 

10 θw 0.262 0.385 0.368 0.370 0.142 0.285 0.291 0.028 0.006 

11 ψf 0.222 0.329 0.283 0.334 0.221 0.324 0.179 0.085 0.001 

12 ψ0 0.094 0.038 0.050 0.045 0.159 0.032 0.084 0.072 0.000 

13 Eg 0.147 0.205 0.190 0.207 0.486 0.483 0.418 0.236 0.000 

14 CN0 0.053 0.011 0.036 0.033 0.062 0.001 0.088 0.010 0.001 

15 λd 0.172 0.163 0.173 0.173 0.028 0.023 0.079 0.021 0.017 

   

best subset of watersheds characteristics, the multiple regressions using stepwise backward elimination 

procedure based on p-value of F- statistics (Zhang and Wang, 1997) is performed in SYSTAT 10. Here, the p-

value is the probability (prob(F)) of obtaining a test statistic at least an extreme as the one that was actually 

observed, assuming that the null hypothesis is true. Generally, one rejects the null hypothesis if the p-value is 

smaller than or equal to the significance level (α). If the level is 0.05, then results that are only 30% likely or 

less are deemed extraordinary, given that the null hypothesis is true. The calculated p-value exceeds 0.05, so the 

observation is consistent with the null hypothesis. Likewise, if prob(F)<0.05, then the model is considered 

significantly better that would be expected by chance and reject the null hypothesis of no linear relationship of 

model parameters to the measurable physical characteristics of the watersheds. Some of the statisticians also 

considered the model is highly significant if p-value is less than or equal to 0.001. 

The various combination of p-value -to enter and p- value-to remove and/or F-value-to enter and F-value to 

remove were tried in SYSTAT 10 to choose the correct combination to develop the regression equations. The 

regression statistics along with analysis of variance (ANOVA) for correct combination of physical 

characteristics of watersheds to estimate the various model parameters are computed. As seen from the 

ANOVA, the multiple correlation coefficient (multiple R) for most of the model parameters such as CN0, α, β, 

P3, P4, θw,ψf,,ψ0, Eg, and CNd0, are more than 0.60, which indicates that there exists a good correlation between 

model parameters and measurable physical characteristics of the watersheds. A very good correlation (multiple 

R=0.95) is found between initial ground water content (ψ0) and physical characteristics of the watershed such as 

A, P, Lb, Lm, Rf, Rc, and Re. From the p-value of F-statistics, it is found that the regression equation developed 

for β, θw, ψ0, and Eg parameters are highly significant (level of significance or p- value is more than 0.001), while 

some parameters such as δ, K, P1, and λd are very poorly significant (or insignificant) at 95% confidence interval 
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(level of significance or p-value is less than 0.05). From the ANOVA, the regression equations for various 

model parameters were formulated as shown in Table 4.  

 

Table 4. Regression Equations Showing Relationship between LTHS ASMA II Model 

Parameters and Geomorphological Characteristics of Watersheds 

Model 

Parameter 

Multi-linear Regression Equation Multiple  

(R2) 

CN0 CN0=31.991-0.317P+0.702Lb  0.39  

α α=0.64-0.424Rc+0.0001H   0.52  

β β =0.022-0.001L+0.0003H  0.76*  

γ γ =0.751-0.37Rc  0.31  

δ δ =0.023Lb+10.38Rf-2.75  0.24**  

P3 P3=0.45+0.0003A+0.005P-0.02Lb  0.56  

P4 P4=1.38-0.0001A-0.018Lb+0.017Lm-1.125Rf+0.0001H     0.74  

K K=1.27-0.011H+0.147V     0.40**  

P1 P1=0.02+0.001P-0.002Lb-0.0002Lm+0.17Rc-0.18Re     0.24**  

θw θw=10.968Lb-8.248Lm+275.567Rf-481.685Rc+319.221Re+2.709V-133.414  0.85*  

ψf θf=180.578+0.835Lm-330.33Rc+444.463Re   0.54  

ψ0 ψ0=0.26A-15.69P+48.91Lb-17.0Lm-320.07Rf-3144.86Rc+4051.43Re-207.56   0.91*  

λd λd =0.056+0.001Lm  0.17**  

CNd0 CNd0=36.79+1.51Lb-1.19Lm  0.52  

Eg Eg=0.242+0.601Rc-0.0001H    0.65*  

 

Note:   *   highly significant at 95% confidence interval 

           ** not significant at 95% confidence interval 

As seen from Table 4, the multi-linear regression equations developed for some of the model parameters of 

MLTHS ASMA model are highly significant, while there exists a significant relationship for most of the 

parameters. Hence, the multi-linear regression equations developed for these model parameters (except for those 

parameters for which regression equations are found insignificant) may be used for parameter estimation using 

the measurable physical characteristics of watersheds. Thus, many parameters of MLTHS ASMA model could 

be estimated from catchment characteristics and could potentially be used for field application when sufficient 

data for better calibration of parameters of the model do not exist.  

 

IV. CONCLUSIONS 

 

The relationship between model parameters and measurable geomorphologocal characteristics of the watersheds 

using multiple regression analysis is developed in this paper. The step-wise regression with backward 

elimination on p-value of F-statistics is followed to develop regression equations. In most of the cases, a 

significant relationship is found between the model parameters and geomorphological characteristics of study 

watersheds at 95% confidence interval. The multi-linear equations thus developed for various parameters of 

MLTHS ASMA model can be used to estimate the total runoff from the unguaged watershed in various agro-

climtic zones of India.   
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