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ABSTRACT 

In this study, the stability of a coupled morphological-convective system during unidirectional solidification 

with buoyancy is discussed for small segregation coefficient as well as a small wave number. The effects of the 

constraints like rotation, permeability and quadratic density profile are investigated by considering linear 

theory. Expressions for the growth rate, critical conditions and solutions corresponding to different order of 

approximations are determined by using power-series expansion technique with boundary conditions.  

 

Keywords: Linear Analysis, Buoyancy, Small Segregation Coefficient, Small Wave Number. 

 

I. INTRODUCTION 

 

Three models like rotation, permeability and quadratic density profile are investigated using linear theory in 

detail. Expressions for the growth rate, critical conditions and solutions corresponding to different order of 

approximations are determined. The physical configuration (Figure 2.1) consists of a binary-alloy melt which is 

directionally solidified at constant speed V. 

 

Under the assumptions and approximations [1], [6] and [7], the heat generated at the solidifying front can be 

neglected and accordingly, it can be presumed that the interfacial perturbations do not give rise to disturbances 

of the temperature field. Therefore, the temperature field can be considered to be fixed as: 

 
z GTT

0


                                                                                                            (9.1.1)  

Where, T0 is the reference temperature of the undisturbed planar interface; G is the imposed temperature 

gradient and z = 0 is the mean position of the interface. 
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II. MATHEMATICAL FORMULATION 

In this study, the mathematical formulation has been constituted in a frame of reference moving at the velocity 

V (the crystal growth rate) as given in the following equations [1], [3] and [7]:  

The conservation of momentum: 
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(9.1.2)  

The conservation of solute in the melt: 
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 (9.1.3)                              

The conservation of mass: 

                           . u = 0                         

 (9.1.4)  

Where, u is the fluid velocity, p is the reduced fluid pressure, c is the mass concentration of the solute in the 

fluid, 0 is the reference density and   is the kinematic viscosity of the fluid. The diffusion of the solute in the 

solid phase is also neglected. The quadratic density profile is given by: 

 2
0

f
Cc  





                                                                                                            (9.1.5) 

Where, 


 is the change in the density; 
 0

is the solutal coefficient of expansion; f
C

is the concentration of 

the solute in the fluid at the interface. 

 
 

2.1 Boundary Conditions 

Under the assumption, if the density changes upon solidification is negligible, the no-slip condition and the mass 

balance condition are:    0 u                                                          (9.1.6) 

The mean position of the interface is taken as z = h (x, y, t) and the conservation of solute at the interface:  

 c(1k  )( V + h t ) = D(cz  cxhx  cyhy ), where, the subscript denotes the derivative.               (9.1.7) 

The condition of thermodynamic equilibrium: 

         T = mc + TM [ 1 + L



 K  ]  , 





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
 K

L

γ
1TmcGhT M0

  from (9.1.1)                                     (9.1.8) 

Where, m is the liquidus (figure 2.2) slope, TM is the melting point of the pure substance, 


 is the surface free 

energy, L is the latent heat and K is twice the mean curvature: 
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                                                                         (9.1.9) 

Far away from the interface, the velocity field is considered to be bounded and the solute concentration is equal 

to s
C

, which is the concentration of the solute in the solid phase. 

 

2.2 Basic State Solution 

The study-state solution constitutes: 
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  (i) A planar interface 0h  (9.1.10),      (ii) Zero melt velocity   (9.1.11)0  u   

  (iii) The reference temperature of the planar interface:  
(9.1.12) .....T

k
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  (iv) The solute gradient at the interface:    
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 (v) The concentration field:                                        
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Where, V

D


 is the concentration boundary-layer thickness                                                 (9.1.15) 

The governing equations (9.1.2) to (9.1.4) are made dimensionless by using the following scales [2] and [4]: 

Length: x x  , 
y y 
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Vk                                        (9.1.16)                                                                        

The resulting dimensionless equations are: 
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 (9.1.18);   . u= 0    (9.1.19) 
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The interface 
 ty,x,hz 

 in the dimensionless form are given by: u=0 (9.1.21)  
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From (9.1.19) and (9.1.21), we have D w = 0 at the interface                                                         (9.1.23a) 

Far away from the interface (i.e. as z ) the conditions are: 

 u 
,     c = 1 …… (9.1.24) 

Thus, the dimensionless basic state solution: 

               0 wvu …. (9.1.25);   0h  (9.1.26);     
zec 1  (9.1.27)     

Equation (9.1.17) in the component form: 
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The pressure, in (9.1.28) - (9.1.30), is eliminated by applying the operator curl twice on (9.1.17). The resulting 

equation in the vertical component of velocity is given by: 
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Where,
2
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  is the two - dimensional Laplacian operator 

 

III. LINEAR STABILITY ANALYSIS 

The stability of the melt for infinitesimal perturbations is discussed. Widely used and accepted method is 

employed in the study [7]. The Leading-order solutions as well as corrections to the leading-order solutions are 

computed by considering higher order approximations. To introduce disturbances to the basic state as follows: 

     WV,U,ε0,0,0wv,u, 
                                                                                                         (9.1.32)  

 H ε0h                                                                                                                                   (9.1.33)   

C εe1c z  

                                                                                                                        (9.1.34) 

Substituting the above equations such as (9.1.32), (9.1.33), (9.1.34) with (9.1.14), (9.1.31), (9.1.21) to (9.1.25) 

and then linearising with respect to  , we get the set of differential equations in terms of . The normal modes 

for each of the dependent variable as 
      t σe yx,g zFtz,y,x,f 

                                                              (9.1.35) 

Where, 
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And the growth rate   determines the stability of the marginal state. In (9.1.36), ‘a’ is the horizontal wave 

number. By equating the coefficient of   from the resulting equation, to obtain the system of equations as 

follows: 
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The associated boundary conditions at the undisturbed interfacial position:  

z = 0, 
0

z d

dW
W 

                                                                                                                 (9.1.39)  
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Far away from the interface as z,
||W

, 0C                                                                (9.1.41) 

By solving (9.1.40), obtained the linearized thermodynamic equilibrium equation for the interfacial  

Perturbation i.e. H, where  12 1 

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From (9.1.42), it is clear that if M0, then H is forced to tend to be zero and this corresponds to the 

unperturbation state. This result is very much consistent with (9.1.20). In other words, there will be no 

morphological instability if the under cooling is set equal to be zero. Further, the substitution of (9.1.42) with 

(9.1.40) yields the equation of the mass conservation of solute at the interface: 
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Where, due to an interfacial-shape change, the third term represents the perturbation in the concentration field. 

From (9.1.42), it follows that near the critical value for the onset of convection for which M1, the third term 

will be proportional to
2

1
a . It is clear that, if the wave number is sufficiently small, then this term would 

definitely dominate the diffusion term zd

dC

  and this is a singular perturbation. Then from Physics, it follows 

that, the dimensional wavelength or the characteristic cell size of an interfacial perturbation is  a
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From (9.1.43), it is implied that decrease in ‘a’ leads to increase in the wavelength. In other words, the cell size 

exceeds the diffusional width V
D

 for very small values of ‘a’. Thus, the cell gets elongated at the onset of 

instability (M=1). 

In the further analysis, the whole problem is rescaled for k<<1 under the assumption that ‘a’ is also very smaller 

than 1. Thus, to introduce: kk
~2a  and  ~2a                                      (9.1.44) 

The governing system of equations under this new scaling becomes: 
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Together with the conditions at z=0:
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And far away from the interface as z, 
|W|

, 0C  .                                                           (9.1.49)  
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3.1 The Solution Procedure 

To introduce power-series expansion for all the dependent variables of the problem under consideration as 

follows: 
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By substituting power-series expansion of  (9.1.50) with (9.1.45) to (9.1.49) and also equating the like powers 

of
2a  to get a set of differential equations corresponding to different order of approximations, the leading order 

will be: 
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With 
0DWW 00 

at z=0; 
|W| 0  as z ; 
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The corresponding solutions are: 
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The corresponding solutions are: 
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Where,  
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Now substituting and simplifying the expression for 1
C

 into the last equation of (9.1.58), we find the expression 

for the growth rate :  
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                                                                  (9.1.62) 
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Although the general form of   corresponding to linear and quadratic density profiles is same and also the 

influence of quadratic profile is clearly seen in the second part of the first term, in the absence of gravity (i.e. 

R=0) in the limit of M=1 and 
2a  being very small then, the equation (9.1.62) reduces to:  

 
  kaa M1σ 421  

                                                          (9.1.63) 

This result is identical to that of linear density profile (since R=0) and also, this expression is identical to that of 

[5] and [7]. From (9.1.63), we compute the critical values of R and by setting 0 .Thus, 
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                                             (9.1.64) 

and the condition 
0

da

dR
2


 for optimality yields: 
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                                             (9.1.65) 

Where, 
2
ca

satisfies the equation: 
    0M1MaM2a 1121222  

                 (9.1.66) 

Solving (9.1.66), we obtain 
 1MMa 2

1
112

c
 

                                                                   (9.1.67) 

Equation (9.5.65), in the limit M0, reduces to  

 
*

1

c
C5

S16
R




                                                 (9.1.68) 

From (9.1.68), it is evident that c
R

depends on segregation ratio parameter and the Sekerka number. When the 

density profile is quadratic, there is a drastic change in the value of c
R

. Also in the 0Lt k , 
*C  becomes 

infinite so that
0R

c


. 

From the definitions of 
1M

and , both are inversely proportional to the solute concentration S
C

. Therefore, 

increase in S
C

, the value of wave number also increases as well as the cell structure will get contracted in case 

of a pure substance. Obviously, 
0C

S


 and a=0 and that corresponds to a planar interface. 

Suppose, we make an approximation that R=0, near M=1, then clearly M -1= O (a2) and from (9.1.63): 

 
  k 42 aa1M~

 (Since M~1)                                                     (9.1.69) 

To apply this approximation to (9.1.69), we obtain: 
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                                                                                                       (9.1.70) 

As the asymptotic expansions considered in this study is valid only for a2<<1 and hence from (9.1.70), we get: 

1
2

1M














 & 
  11M

4

1 2





 
k

                                                                                                   (9.1.71) 

 

IV. RESULTS AND DISCUSSIONS 

The results are presented in the form of graphs for a wide range of parameters. The graphs corresponding to the 

linear theories are discussed in detail. The graphs reveal the points that are expressed below: 
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In Figures 9.1 to 9.3, the profiles of 1
W

are presented for different combinations of the parameters. While, 

Figure 9.1 predicts the variation of 1
W

 w.r.t. A for k=0.001, M=1.025, S=10, R=0.44329 and 1.0 . It is 

observed that, 1
W

 decreases with z and is negative for all the combinations. 

 

 

From Figures 9.4 to 9.6, it is clear that the effect of B is less, when compared to the effect of A on the 1
C

 

profiles. While in Figure 9.4, the influence of the parameter S is remarkable and 1
C

 increases with S for a fixed 

value of z and other parameters. Also in Figure 9.7, the entire curves merge into a single curve. Figures 9.5 and 

9.8 are similar but quantitatively differ from each other. 

 

While in Figure 9.9, the effect of  is almost nil on the profile C1. In Figure 9.10, the graph of Rc vs S is 

plotted. In this graph, Rc is positive for =0.1, while negative for =0.5 and the effect of S is insignificant. 
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In Figure 9.11, the graph of 
2
ca

 vs   is linear whereas in Figure 9.12, the curves depict the effect of   on 
2
ca

 

for a fixed value of M. Further, the effect of M is to increase the value of 
2
ca

 for fixed values of the parameters 

under consideration. 

              

In Figure 9.13, the variation of R with respect to M is presented. While Figure 9.14 predicts that R decreases 

with S for M=0. 

              

Note: In all the graphs, R = RC* and Rc = Rc C*. 

 

V. CONCLUSION 

Finally, it is concluded that these graphs are of immense use in predicting the influences of the different 

parameters either individually or cumulatively on the functions considered in a clear manner. This study predicts 

the nature of the solidification and profiles like velocity and concentration with small segregation coefficient 
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and for small wave number. Since, linear stability analysis has its own limitations; the nonlinear analysis would 

be recommended. 
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