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ABSTRACT

In this study, the stability of a coupled morphological-convective ystemvduring unidirectional solidification
with buoyancy is discussed for small segregation coefficient asavell as a small wave number. The effécts of the
constraints like rotation, permeability and quadratic density profile are investigated by<considering linear
theory. Expressions for the growth rate, critical conditions and<solutions corresponding to different order of

approximations are determined by using power-seri€s expansion technigue,with boundary conditions.
Keywords: Linear Analysis, BuoyancysSmall'Segregation Coefficient, Small Wave Number.

I. INTRODUCTION

Three models like rotation, permeability and quadratic density profile are investigated using linear theory in
detail. Expressions for the growth rate, eritical conditions and solutions corresponding to different order of
approximations aresdetermined. The physical configuration (Figure 2.1) consists of a binary-alloy melt which is
directionally solidified at constant speed’V.

FIGURE 2.1 Schematic of the directional solidification of a melt
at speed v

Under the assumptions and approximations [1], [6] and [7], the heat generated at the solidifying front can be
neglected and accordingly, it can be presumed that the interfacial perturbations do not give rise to disturbances

of the temperature field. Therefore, the temperature field can be considered to be fixed as:

T=T,+Gz o1

Where, TO is the reference temperature of the undisturbed planar interface; G is the imposed temperature
gradient and z = 0 is the mean position of the interface.
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I1. MATHEMATICAL FORMULATION

In this study, the mathematical formulation has been constituted in a frame of reference moving at the velocity
V (the crystal growth rate) as given in the following equations [1], [3] and [7]:

The conservation of momentum:

VAN
@+(u V)u VUV 52, +ng
ot oz P, P,

0 0
(9.1.2)
The conservation of solute in the melt:
@+(u-v)c—v@ =DV?c
ot 0z
(9.1.3)

The conservation of mass:

vV.u=0

(9.1.4)
Where, Uis the fluid velocity, p is the reduced fluid pre

o)

9P _ ple-c, P

Po
Where, op is the change in the density; B(> O) is the solutal ¢ ient of expansion; C is the concentration of

the solute in the fluid at the int

2.1 Boundary Conditions

if the density ges upon selidification is negligible, the no-slip condition and the mass
(9.1.6)

ce is taken'as z = h (x, y, t) and the conservation of solute at the interface:

— cyhy), where, the subscript denotes the derivative. (9.12.7)
quilibrium:

T, +Gh:mc+TM[1+XK}
from (9.1.1) (9.1.8)

Where, m is the liquidus (figure 2.2) slope, TM is the melting point of the pure substance, ¥ is the surface free

energy, L is the latent heat and K is twice the mean curvature:

K=, @+h2)-2nhh, +h (1+h2)]-(+h2 +h2 )7 ©.1.9)

Far away from the interface, the velocity field is considered to be bounded and the solute concentration is equal

C

to s, which is the concentration of the solute in the solid phase.

2.2 Basic State Solution

The study-state solution constitutes:
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(i) A planar interface N=0 (9.1.10), (i) Zero melt velocity U=0) (9-1.11.

T-MCs 1 (0.1.12)
(iii) The reference temperature of the planar interface: k
_k-1cy
(iv) The solute gradient at the interface: KD (9.1.13)
C:&{GLVDJP_J%J}
(V) The concentration field: £ (9.1.14)
_D

Where, V' is the concentration boundary-layer thickness (9.1.15)

The governing equations (9.1.2) to (9.1.4) are made dimensionless by using the fo

Length: X =8 X', y=8y’, z=87" h=8h", velgcity: U=V U v=

¢

Pressure: D  :Time: V° : Concentration: £

\YA
_Hv? =Dy & (o)

The resulting dimensionless equations are:

51{@ +(u-V)u - @} — _Vp+Viu- RC 2K

ot
0z (9.1.17)
% 4o Ve- 9C_yrg
0z (9.1.18); V.
s=Y
D : schmidt number;
igh number; (9.1.20)

the dimensionless form are given by: u=0 (9.1.21)

(9.1.22)
hh, +h, (@+h2)][i+hz +h2)] #=0

Y (9.1.23)
From (9.1.19) and (941.21), we have D w = 0 at the interface (9.1.233a)
Far away from the interface (i.e. as Z— OO) the conditions are:

|u|<o°, c=1.... (9.1.24)

Thus, the dimensionless basic state solution:

u=v=w=0 _9125: h=0 9126 c=1—€" (9127
Equation (9.1.17) in the component form:

285|Page




International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.02, Issue No. 10, October 2014 ISSN (online): 2348 — 7550
s—l{a U, u-v)u-2 “} _0P vz
ot dz] 0X (9.1.28)
S‘l[@ +U-V)v- 0 V} _OP L y2y
ot oz] 0y (9.1.29)
S‘l[a—w+(u-v)w—a—w} _9P  vrw_RCE?
ot 0z 0z (9.1.30)

The pressure, in (9.1.28) - (9.1.30), is eliminated by applying the operator curl twice on (9.1.17). The resulting

equation in the vertical component of velocity is given by:

S_]{ﬁ V2w+v2(u-v) W—ivzw} =vihw- RC*Vfc2

ot 0z (9.1.31)

V2= o

1 2 2
Where, OX" 0Y" s the two - dimensional Laplacian operat

I11. LINEAR STABILITY ANALYSIS

The stability of the melt for infinitesimal perturbati accepted method is

employed in the study [7]. The Leading-order soluti g-order solutions are
computed by considering higher order approxi basic state as follows:

(u,v,w)=(0,0,0)+¢(U,V,W)

(9.1.32)
h=0+¢H (9.1.33)
c=1-e*+eC (9.1.34)

Substituting the above equatio (9.1.32), (9.1.33), (9.134) with (9.1.14), (9.1.31), (9.1.21) to (9.1.25)

and then linearising with respec t of differential equations in terms of €. The normal modes
y)e (9.1.35)

(9.1.36)

& ’ -
2 \W|= OI—Z—a2 W+RC a2(2C—2Ce‘Z)

Or
2 2
[ dd . —aZJ[ dd . +sfldi—a2 —Slo}W=—2RC*a2(1—eZ)C
z z z (9.1.37)
2
{dd ~+S* dd —a’ 0} C=We*
z (9.1.38)
The associated boundary conditions at the undisturbed interfacial position:
_dw _0
z2=0, T dz (9.1.39)
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9C | 1-K)C—(o+K)H=0

dz (9.1.40)
(M*-1)H-C+Ta’H =0 (0.1.39)
Far away from the interface as z—o, W< ® C—0 (9.1.41)

By solving (9.1.40), obtained the linearized thermodynamic equilibrium equation for the interfacial

H=15 ¢ -
Perturbation i.e. H, where [a -1+M ] (9.1.42)
From (9.1.42), it is clear that if M—0, then H is forced to tend to be zero and this corresponds to the
ds, there will be no
n of (9.1.42) with

unperturbation state. This result is very much consistent with (9.1.20). In ot
morphological instability if the under cooling is set equal to be zero. Further,

(9.1.40) yields the equation of the mass conservation of solute at the interface:

9 g lorRIC

dz |a21“—1+M‘1|=

hen from Physics, it follows
a=D2n
interfacial perturbation is V a

(9.1.44)
(9.1.45)
(9.1.46)
Together with the conditions at z=0: dz (9.2.47)
- 2= 1
d—C+(1—a2k)c-(J—E)al O+kL _g
dz M™ —1+a’T (9.1.48)
And far away from the interface as z—o, |Wi<oo ,C—0, (9.1.49)
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3.1 The Solution Procedure
To introduce power-series expansion for all the dependent variables of the problem under consideration as
follows:

: (9.1.50)
By substituting power-series expansion of (9.1.50) with (9.1.45) to (9.1.49) and also equating the like powers

2
of @ to get a set of differential equations corresponding to different order of approximations, the leading order

will be:

3
(dd—j(di+8‘1jw =0

z° (9.1.51)
i(iﬂjc =W,e ™
dz\d 52)
with Wo =DWo =0 50, IWo <% o5 750 ; (d-+1cC, =04t )

The corresponding solutions are:
W, =0

(9.1.54)
_AnZ
C,=he , where A is an arbitrary constant (9.1.55)
2
The equations at O(a )are,
3
(%j(di +51] W, =—2RCAleZ —e?)
z\dz (9.1.56)
i(iu) C,-(1+0)C, =
dz\dz (9.1.57)
(9.1.58)
(9.1.59)
— A11 A :§ A11
iS 1i28 ) 7(2s-1) "™ " 7(s-))
3 -2Z -3Z
C,=Be?+[A, -All+5)|ze? +[ S Alfsz 7 } e %7 _Au® 3t 2A1526 -
And (5*-1)(es-9) (5-1) ~ 24(25-1) (9.1.60)
*
Where, 15 =RC'S (9.1.61)

C

Now substituting and simplifying the expression for ™~ into the last equation of (9.1.58), we find the expression

for the growth rate © :

:[az 1-M* —a“rﬂl_{ 5RC’ H_K
M™ +a’T’ 6(L+S?) (9.1.62)
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Although the general form of O corresponding to linear and quadratic density profiles is same and also the

influence of quadratic profile is clearly seen in the second part of the first term, in the absence of gravity (i.e.

2
R=0) in the limit of M=1 and a being very small then, the equation (9.1.62) reduces to:
_ _ N 2 _A4T
0_(1 M )a a'T -k (9.1.63)
This result is identical to that of linear density profile (since R=0) and also, this expression is identical to that of

[5] and [7]. From (9.1.63), we compute the critical values of R and by setting c=0 .Thus,
6(1+S’1) M*+a’l’
R= —|1-
5C (-M*)a?—a’r
dR 0

and the condition 98" for optimality yields:

R.C = {6(“531 }[1—k rlm ﬂ

(9.1.64)

2
Where, & satisfies the equation:

ar =M (Mm% -1)

r’@f +2M'ra’ -m* 1.66)

Solving (9.1.66), we obtain (9.1.67)
Equation (9.5.65), in the limit M—0, reduce (9.1.68)
From (9.1.68), it is evident that the Sekerka number. When the

R.—0

C

ersely proportional to the solute concentration ~s. Therefore,

(Since M~1)

.69), we obtain;

(9.1.69)

(9.1.70)

As the asymptotic expansions considered in this study is valid only for a2<<1 and hence from (9.1.70), we get:

M-1
(Tj«l @<i(|v|—1)2 <«<1
& 4r (9.1.72)

IV. RESULTS AND DISCUSSIONS

The results are presented in the form of graphs for a wide range of parameters. The graphs corresponding to the

linear theories are discussed in detail. The graphs reveal the points that are expressed below:
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In Figures 9.1 to 9.3, the profiles of Wlare presented for different combinations of the parameters. While,

Figure 9.1 predicts the variation of W w.rt. A for k=0.001, M=1.025, S=10, R=0.44329 and'=01 1t s

W

observed that, decreases with z and is negative for all the combinations.

Fig9.1 W, Vst Fig 9.2
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While in Figure 9.9, the effect of [is almost nil on the profile C1. In Figure 9.10, the graph of Rc vs S is

plotted. In this graph, Rc is positive for r=0.1, while negative for I'=0.5 and the effect of S is insignificant.
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Fig 9.10 RcVs S
Fig 9.9 C,Vsz
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for a fixed value of M. Further, the effect of M is to increase the valu a
under consideration.
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In Figure 9.13, thesvariation of Riwith respec sented. While Figure 9.14 predicts that R decreases
with S for M=
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Note: In all the graphs, R = RC* and Rc = Rc C*.

V. CONCLUSION

Finally, it is concluded that these graphs are of immense use in predicting the influences of the different
parameters either individually or cumulatively on the functions considered in a clear manner. This study predicts

the nature of the solidification and profiles like velocity and concentration with small segregation coefficient
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and for small wave number. Since, linear stability analysis has its own limitations; the nonlinear analysis would

be recommended.
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