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ABSTRACT
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I. INTRODUCTION
The notion’ of non-Archimedean Menger space has been established by Istratescu and Crivat [4]. The
existence of fixed point of mappings @n non-Archimedean Menger space has been given by Istratescu [3].

In 1997, Cho et al. [2] introduced the concepts of compatible maps and compatible maps of type (A) in
non-Archimedean Menger probabilistic metric spaces and gave some fixed point theorems for these maps. In a
paper, Singh, Jain and Jain [10] generalized the result of Cho et. al. [2] by introducing the notion of compatible
self maps of type (P-1) and type (P-2).

I1. PRELIMINARIES

Definition 1. [2] Let'X be a non-empty set and D be the set of all left-continuous distribution functions. An
ordered pair (X, F) is called a non-Archimedean probabilistic metric space (shortlya N.A.PM-space) if Fis a
mapping from XxX into D satisfying the following conditions (the distribution function F(u,v) is denoted by

Fu,v forallu,v e X):

(PM-1) F,(x)=1, forallx>0, ifand only if at least two of the three points are equal;
(PM-2) Fuv =Fyui
(PM-3) F,,(0)=0;
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(PM-4) If Fu,v (x1) =1, FV,W(XZ) =1 then Fu,w (max{xq, Xo}) =1
forall u,v,we X and X1, X9 = 0.

Definition 2. [2] A t-norm is a function A : [0,1]x[0,1]x[0,1] — 0 [0,1] which is associative, commutative,
non-decreasing in each coordinate and A(a,1,1) = a forevery a € [0,1].

Definition 3. [2] A N.A. Menger PM-space is an ordered triple (X, F,A), where (X, F) is a non-Archimedean
PM-space and A is a t-norm satisfying the following condition:

(PM-5) Fuw (Max{x,y}) = A (Fyy (X), Fyw(y)), forallu,v,w e Xand x,y=0.

The concept of neighbourhoods in Menger PM-space was introduced by Schweizer Sklar [8]. If x € X,
€> 0 and A € (0,1), then an (g,) - neighbourhood of x, U,(e,A) is defined
Ued) = {y € X: Fyle) > 1-2J.
If the t-norm is continuous and strictly increasing then (X, F, A) is a Hausdorff
the family Uy(e,A) = {x € X, &>0, A € (0,1)} of neighbourhoods.

9(Fyy®) < 9(Fy 2(0) +9(F , ()
forallx,y,ze Xandt >0,where Q={g|g:[0,1 i i ing, g(1) =0 and
g(0) < }.
Definition 5. [2] A N.A. Menger PM-sp i e existsag e [J Qsuch that

Remark 1.
1)

2 is, of type (D)g, then it is metrizable, where the metric d on X is

*)

Lemmal.[2] Ifaf on ¢ :[0,+ o) — [0,+o0) satisfies the condition (@), then we have

(1) FmMHEDQ!m¢WD=O,MmbmmMmMnm¢®

(2) If {t,} isanon-decreasing sequence of real numbers and t,, 1 < ¢ (t), n=1,2, ... then lim t,=0.

nN—o0

In particular, ift < [1 ¢ (t) forallt>0,then t=0.
Lemma 2. [2] Let A, B, S, T: X — X be mappings satisfying the condition (1) and (2) as follows :

M) AX) < T(X)and B(X) < S(X).
(2) 9(Faxey(1) < d(Mmax{g(Fsx1y(1)), 9(Fsx.ax(t)), 9(Fry,py(T)),
Y2(9(Fsxey(T)) + 9(Fryax())})
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for all t > 0, where a function ¢ : [0,+ o) — [0,+ o) satisfies the condition (®). Then the sequence {y,} in X,

defined by AXon = TXons1 = Yon and BXonsg = SXonsz = Yoner  forn=0, 1, 2, ..., such that
!m 9(Fy, y,,,(0) =0 forallt>0 isaCauchy sequence in X.
Definition 6. [10] Let A, S: X — X be mappings. A and S are said to be compatible if
,!Lnl g(FAan, SAXn(t)) =0 forallt >0,

whenever {x,} is a sequence in X such that lim Ax, = lim Sx, =z for some z in X..
nN—w

nN—0

Definition 7. [10] Let A, S: X —[] X be mappings. A and S are said to becompatibl
lim g(FAan, San(t)) =0and lim g(':SAxn, AAxn(t)) =0

aps of type (P) if

for all t > 0, whenever {x,} is a sequence in X such that lim Ax,= lim Sx, for some z in X.
n—o0 n—o

rIll_g‘! g(FAan, SSXn(t)) =0 forallt>0, whenever {x,} is a se such that M\O AXx, = rI}i X, =2
for some z in X.

Definition 9. [10] Let A, S : X — X be mappings. i i of type (P-2) if
!Ln; g( FSAxn, AAXn(t)) =0 forallt>0, whenev Axp = !m Sx, =2
for some z in X.

Remark 2. Clearly, if a pair of mappin i i the pair (S, A) is compatible
of type (P-2). Such maps are called mut f type (P) Further, if A and S are compatible
mappings of type (P), then the pair (A, S) is compatible of well as type (P-2). The following is an
example of pair of self mapsfin,a e mutually compatible of type (P) but not
compatible.

Example 1. Let (X, F, A) bet X = [0, 2] and the metric d on

X is defined in iti i aps A and S as follows :

if 0<x<]
if 1<x<2

Therefore,

Then AX, — oo Similarly, Sx — [J1asn — ool]

Also Fasx,sax, @)= H (t—(1-1/n)) and Fasc sax () =9(H (t-1))=0, Vv t>0
Hence, the pair (A,S) is not compatible.

But Fasx, ssx, (t) = H (t— (2/n))
And, 1im g(Fase,ssq, () = 9(H (1) =0 V t>0.
Hence, the pair (A,S) is compatible of type (P-1).
Similarly, the pair (A, S) is compatible of type (P-2).
From the above example it is obvious that S and T are mutually compatible but not compatible maps .
Proposition 1. Let B, T : X —[ X be self maps of a N. A. Menger PM-space (X, F, ).
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(a) If Band T are compatible of type (P-1) and Bz =Tz forsomez < [0 X,thenBTz=TTz
(b) If B and T are compatible of type (P-2) and Bz = Tz for some z € X, then TBz = BBz
which impliesthat TBz=BBz=BTz=TTz

Proof. Suppose {x,} is a sequence in X defined by X,=2z,n=1,2,..and Bz=Tz.

n

Then we have, Bx, — Bz, Tx;— Tz as n— o [

Since (B, T) is compatible of type (P-1), we have
g(FBTZ TTz (t)) = g(FBTXn,TTXn (t)) —0asn— o [

ie. BTz=TTz.
Similarly, we can have
TBz = BBz.
Hence, by (1) and (2), we have BTz =TTz =TBz =BBz.
Proposition 2. Let B and T be self maps of a N. A. Menger PM-s
such that Bx,, Tx, — z for some z in X as n — oo ,Then we ha
(1) If the pair (B,T) is compatible of type (P-1) then TTx
(2) If the pair (B,T) is compatible of type (P-2) then
Proof. (i) Suppose T is continuous at z.

Since an = Txn = z forsome z eX and

therefore F
9(FBz, TTX,
Hence TTxn — Bz asn— o

Similarly BBx,

I11. MAIN RES

either AB is continuous;
(3.4) (L, AB)and (M, ST) are mutually compatible of type (P)

(35 9(FLy my®) = & (Mx{g(F agx sTY(V): 9FABK, Lx(D): 9(FsTY, My(D),
72(9(Fax, My®) + 9(FsTy  xON})

forall t>0, where a function ¢ : [0,+ ) — [0,+ o) satisfies the condition (®).

Then A, B, S, T, L and M have a unique common fixed point in X.
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Proof. Letxy € X [ From condition (3.1)[1 3 Xq, Xy € X such that
Lx1 =STxy, =y and Mxg=ABXq =Y.
Inductively, we can construct sequences {x,} and {y,} in X such that
(36)  LXon=STXon41=Yon and  MXoniq =ABXoni0 =Yope1 forn=0,1,2, ...
Step 1. We prove that g(F (t)=0forallt>0.
yn’ yn+1

From (3.5) and (3.6), we have
F t =g(F t
g( y2n’ y2n+1 ( )) g( LX2n' MX2n+1( ))

< ¢(maX{Q(FABX2n, STX2n+1(t))’ g(FABXZn’ LXZn(t))'

9(FsTx  Mx n+1(t)), 1/2(9(FABx2n, MX,, | ONH

2n+1’ 2

= omagFy, y O).9F, (1)

<omagFy y ()9 .

n’ y2n+l

If g(F 1)) < g(F t)) forall t>
o Yonr y2n( ) = o Yo y2n+1( )) fora
F 1)) < F
o Yo y2n+1( ) = o Yonr ¥

On applying Lemma 1, we have

F t)) =0 forallt>0.
g( y2n' y2n+1( ))

Similarly, we have

g(F y2n+1' y2n+2(t)) =0
®)=0

Thus, we have g( v,y
n’ /n+l

On the other , then by (3.5), we have

(Fy v (t)) forallt>0.
2n'7 2n+1

F
( y2n+1'y2n+2(

Therefore, by Lemm

g(Fy y t)) =0 forall t> 0, which implies that {y} is a Cauchy sequence in X by Lemma 2.
n’ Jn+l

Since (X, F, A) is complete, the sequence {y,} converges to a pointz € X. Also its subsequences

converges as follows :
3.7) {Mxon41} — 2 and {ST%on+1} — 2

(3.8) {Lxyn} — 2 and  {ABxy} — z.
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Case I. AB is continuous.
As AB is continuous, and (L, AB) and (M, ST) are mutually compatible,
(AB)2x2n — ABz and (AB)Lxy, — ABz.

As (L, AB) is mutually compatible, so by Proposition 2, we have
L(AB)Xp,, — ABz.

Step 2. Putting X = ABXo, and Y =Xopn4q fort>0 in (3.5), we get
F 1) <o (max{g(F 1)), 9(F 1)),
9(FLABX, Mx, , (D =¢ (Max{a(FapaBx, sTx, . (D) 9(FABABX, , LABX, (V)

g(FSTX MX n+1(t))’

2n+1’ 2l

%O(FABABx, , Mx, , ) +9(FsTy
Letting n —oo, we get

9(Fapzz(D) = ¢ (max{g(FaR; , (). 9(FaRz, ABZ(D):

g(FLZ,MX2n+1(t)) =< ¢(max{g(FABZ,STx2n+1(t))'

9FsTy, | Mx, O %0

2n+1’ 21

Letting n —oo , we get

on+1 fort>0 in(3.5), we get
= ¢(max{9(FaBz,sTx, , (1) 9(FABBZ, LBz ().

9FsTx  Mx n+1(t))’ %(9(F BBz, MXx,, ,, )+ g(FSTX2n+1- LBz ON}).

2n+1’ 2

AsBL =LB, AB =BA, sowe have
L(Bz) =B(Lz) =Bz and AB(Bz) = B(ABz) = Bz.
Letting n —oo , we get

g(FBZ, Z (t)) < ¢(max{g(FBZ,Z (t))’g(FBZ' Bz (t))vg(FZ,Z (t)), 1/Z(g(FBZ' z (t)) + g(FZ’ Bz (t)))})
e oFg, ;)< 60Fg, , ®))

which implies that g(Fg, , (1)) =0 and so we have Bz =z.
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Also, ABz=z andsoAz=z.
Therefore, Az=Bz=Lz=z (3.9)
Step 5. AsL(X) < ST(X), thereexistsv e Xsuchthatz=Lz=STv.

Putting X = Xoqand y=v fort>0 in(3.5), we get

g(Fszn’MV ®) < ¢(maX{g(FABx2n,STv ®), g(FAszn’ Lx,, ®), 9CFsTy, My ),

l/z(g(FAszn' My ) +9(FsTy, Lx,, oN).

Letting n —o0 and using equation (3.8), we get

g(FZ,MV (t)) < ¢ (maX{g(Fz, Z (t)), g(FZ' Z (t)), g(FZ' Mv (t)), %(g(FZ,
e 9F my S BEF, py ©)

which implies that g(F, )4, (1)) = 0 by Lemma 1 and so we have

9(Fz 2 (O

z=Muv.
Hence, STv=2z=Mv.
As (M, ST) is mutually compatible, we have
STMv = MSTv.
Thus, STz = Mz.
Step 6. Putting X=Xo, y=2 fort>0 in

Q(Fszn,Mz ®) < d(max{g(Fp

MTzO)= ¢ X{g(FABXZn,STTZ o), g(FAszn' LX,, o),

9(FsTTZ, MTZ ) %2(0(FABX, , MTZz D) + 9(FsTTZ, Lx, (D)
d ST =TS, we have
MTz=TMz =Tz and ST(Tz) =T(STz) =Tz.
Letting n —o0 we get
0,1, )< dmax{a(F, 1, ®), 9(F, ; ). 9F 1,77 ), %@(F, T, 1) + 9(F 1, , D))
e oF, T, M= 0F, T, O

which implies that g(F (t)) =0 and so we have z=Tz.

z,Tz
Now STz=Tz=1z implies Sz =z.
Hence Sz=Tz=Mz=1z. (3.10)
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Combining (3.9) and (3.10), we get
Az=Bz=Lz=Mz=Tz=Sz = z
Hence, the six self maps have a common fixed point in this case.
Similarly, it is clear that z is also the common fixed point of A, B, S, T, L and M in the case AB is continuous,
and (L,AB) and (M,ST) are compatible of type (P-2) .
Case Il. L is continuous, and (L, AB) and (M,ST) are mutually compatible.

Since L is continuous, L2x2n — Lz and L(AB)Xp, — Lz

As (L, AB) is mutually compatible, so by Proposition 2,
(AB)Lxp, — Lz.

Step 8. Putting X =LXo, and y=Xp,,1 fort>0 in(3.5), we get

9(|:|_|_X2n,|\/|x2n+1 ®) = o(max{g(Fap LX, STX, ., ®), 9(F

9FsTx.  Mx " ®),

2n+1’ 2n
2QFABLx, , Mx,, .
Letting n —o0, we get
9(FLzz ML = ¢(max{g(F| ;; (V). 9

i.e. g(FLZ,Z (t))D = ¢(g(FLZ,Z (t))):

+9(F; 2 OND)

Thus, we have Lw =z = ABw.

Since (L, AB) is mutually compatible and so by Proposition 1, we have
LABw = ABLw and hence, we have
Lz = ABz.
Also, Bz = z follows from step 4.
Thus, Az=Bz =Lz = z and we obtain that z is the common fixed point of the six maps in this case also.
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Similarly, it is clear that z is also a common fixed point of A, B, S, T, L and M in the case P is continuous, and
(L,AB) and (M,ST) are compatible of type (P-2).
Step 10. (Uniqueness) Let u be another common fixed point of A, B, S, T, L and M; then
Au= Bu=Su=Tu=Lu=Mu=u.

Putting x=z and y=u fort>0 in (3.5), we get

9FLz My ) = o(max{9(Fapz sty 1) I(FARZ, Lz M) 9FsTy, My ),

%(9(FaABz, Mu ) + 9(FsTy Lz OND

Letting n —o0, we get

o(F, 4 )0 < o(max{a(F, , ®). 9F, , ®). 9, | ©). %(@(F, |
= $((F,, y ®)),

which implies that g(F, , (t)) =0 and we have z =u.

Therefore, z is a unique common fixed point of A, B, S, T, L and
This completes the proof.

Remark 3.1. If we take B = T = I, the identity map on 3.2) is satisfied
trivially and we get

Corollary 3.1. LetA, S, L,M: X — X be ma
(@) L(X) = S(X), M(X) Oc AX);
(b) Either A or L is continuous;
(©
(d)
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