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I. INTRODUCTION 

           The notion of non-Archimedean Menger space has been established by Istrătescu and Crivat [4].  The 

existence of fixed point of mappings on non-Archimedean Menger space has been given by Istrătescu [3].   

In 1997, Cho et al. [2] introduced the concepts of compatible maps and compatible maps of type (A) in 

non-Archimedean Menger probabilistic metric spaces and gave some fixed point theorems for these maps.  In  a  

paper, Singh, Jain and Jain [10] generalized the result of Cho et. al. [2] by introducing the notion of compatible 

self maps of type (P-1) and type (P-2).  

II. PRELIMINARIES 

 

Definition 1. [2]  Let X be a non-empty set and D be the set of all left-continuous distribution functions.  An 

ordered pair (X, F) is called a  non-Archimedean probabilistic metric space (shortly a   N.A. PM-space) if F is a 

mapping from X×X into D satisfying the following conditions (the distribution function F(u,v) is denoted by 

Fu,v for all u, v  X) : 

(PM-1 ) Fu,v(x) = 1,   for all x > 0,   if and only if at least two of the three points are equal; 

(PM-2) Fu,v  = Fv,u ; 

(PM-3) Fu,v (0) = 0 ; 
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(PM-4) If  Fu,v (x1) = 1, Fv,w(x2) = 1   then Fu,w (max{x1, x2}) = 1 

 for all  u, v, w  X  and    x1, x2 ≥ 0.  

Definition 2. [2] A t-norm is a function Δ  : [0,1]×[0,1]×[0,1]  → [0,1] which is associative, commutative, 

non-decreasing in each coordinate and  Δ(a,1,1) =  a  for every  a   [0,1]. 

Definition 3. [2] A  N.A. Menger PM-space is an ordered triple (X, F,Δ), where   (X, F) is a non-Archimedean 

PM-space and Δ is a t-norm satisfying the following condition: 

(PM-5)                   Fu,w (max{x,y})  ≥  Δ (Fu,v (x),  Fv,w(y)),   for all u, v, w  X and  x, y ≥ 0. 

The concept of neighbourhoods in Menger PM-space was introduced by Schweizer and Sklar  [8]. If x  X ,  

ε > 0 and λ  (0,1), then an  (ε,λ) - neighbourhood of x, Ux(ε,λ) is defined  by                              .                          

Ux(ε,λ) = {y X : Fxy(ε)  > 1 – λ}. 

If the t-norm is continuous and strictly increasing then (X, F, Δ) is a Hausdorff space in the topology induced by 

the family Ux(ε,λ) = {x X , ε > 0, λ  of neighbourhoods. 

Definition 4.[2] A  N.A. PM-space (X, F, Δ) is said to be of type (C)g if there exists a g  Ω such that                                          

                       g(Fx,y(t))  ≤   g(Fx, z(t)) + g(F z ,y(t)) 

for all x, y, z  X and t  ≥ 0, where Ω = {g | g : [0,1] → [0, ∞) is continuous, strictly decreasing, g(1) = 0 and 

g(0) < ∞ }. 

Definition 5. [2]  A  N.A. Menger PM-space (X, F, Δ) is said to be type (D)g if there exists a g  Ω such that  

                           g(Δ(t1, t2) ≤   g(t1) + g(t2)    for all t1, t2 [0,1].    

Remark 1.  

(1)  If a  N.A. Menger PM-space (X, F, Δ) is of type (D)g then (X, F, Δ) is of type (C)g. 

(2) If a  N.A. Menger  PM-space (X, F, Δ) is of type (D)g, then it is metrizable, where the metric d on X is 

defined by  

   d(x,y) =    
1

,

0

( ) ( )x yg F t d t  for  all x, y   X.      (*) 

        Throughout this paper, suppose (X,F,Δ) be a complete N.A. Menger PM-space of type (D)g with a 

continuous strictly increasing t-norm Δ. 

          Let    : [0,+∞) → [0,∞)  be a function satisfied the condition (Φ) : 

(Φ)  is upper-semicontinuous from the right and (t) < t   for all   t > 0.   

Lemma 1. [2]  If a function  : [0,+ ∞) →  [0,+∞) satisfies the condition (Φ), then we have 

(1) For all t  ≥ 0,   lim
n

 
n(t)  =  0,   n(t) is n-th iteration of (t). 

(2) If { tn}  is a non-decreasing sequence of real numbers and tn+1 ≤  (tn),  n = 1, 2, … then  lim
n

 tn = 0.   

 In particular, if t  ≤     (t) for all t > 0, then      t = 0. 

 Lemma 2. [2]  Let A, B, S, T : X X  be mappings satisfying the condition (1) and (2) as follows : 

(1) A(X) T(X) and B(X) S(X). 

(2) g(FAx,By(t))  (max{g(FSx,Ty(t)), g(FSx,Ax(t)), g(FTy,By(T)),  

½(g(FSx,By(T)) + g(FTy,Ax(t)))}) 
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for all t > 0, where a function : [0,+) [0,+) satisfies the condition (). Then the sequence {yn} in X, 

defined by  Ax2n = Tx2n+1 = y2n  and  Bx2n+1 = Sx2n+2 = y2n+1    for n = 0, 1, 2, ...,   such that 

 
n
lim


g(Fy
n
,y

n+1
(t)) = 0   for all t > 0   is a Cauchy sequence in X.  

Definition 6. [10]  Let A, S : X →  X be mappings.  A and S are said to be compatible if  

     lim
n

g(FASx
n
, SAx

n

(t))  = 0       for all t  > 0 ,  

whenever {xn} is a sequence in X such that  lim
n

Axn =  lim
n

Sxn  = z for some z in X . 

Definition 7. [10]  Let A, S : X →X be mappings. A and S are said to be compatible maps of type (P) if
  

lim
n

 g(FASx
n
, SSx

n

(t))  = 0 and lim
n

  g(FSAx
n
, AAx

n

(t))  = 0  

for all t > 0, whenever {xn} is a sequence in X such that  lim
n

 
Axn = lim

n  
Sxn  = z  for some z in X.  

Definition 8. [10]  Let A, S : X → X be mappings. A and S are said to be compatible maps of type (P-1) if    

lim
n

 g(FASx
n
, SSx

n

(t))  = 0    for all t > 0,  whenever {xn} is a sequence in X such that  lim
n

Axn = lim
n

Sxn  = z  

for some z in X. 

Definition 9. [10]   Let A, S : X → X be mappings. A and S are said to be compatible maps of type (P-2) if   

lim
n

g( FSAx
n
,  AAx

n

(t))  = 0    for all t > 0, whenever {xn} is a sequence in X such that  lim
n

 

Axn = lim
n  

Sxn  = z  

for some z in X. 

Remark 2.   Clearly, if a pair of mappings (A, S) is compatible of type (P-1), then the pair (S, A) is compatible 

of type (P-2). Such maps are called mutually compatible of type (P) Further, if A and S are compatible 

mappings of type (P), then the pair (A, S) is compatible of type (P-1) as well as type (P-2). The following is an 

example of pair of self maps in a N.A. Menger PM-space which are mutually compatible of type (P) but not 

compatible. 

Example 1.   Let  (X, F, Δ)  be the induced   N.A. Menger PM-space, where         X = [0, 2] and the metric d on 

X is defined in condition (*) of remark 1. Define self maps A and S as follows : 

 
2 , 0 1,

2, 1 2,

x if x
Ax

if x

  
 

 
    and  

, 0 1,

2, 1 2.

x if x
Sx

if x

 
 

 
 

Take          xn = 1– 1/n.    

 Now          FAx
n
,1 (t) = H(t – (1/n)) 

Therefore,     lim
n

  (FAx
n
,1

 
(t)) =1    

Then         Axn → 1 as  n→ ∞  Similarly,  Sxn → 1 as n → ∞ 

Also          FASx
n

,SAx
n 
(t) = H (t – (1–1/n))  and   FASx

n
,SAx

n 
(t) = g(H (t – 1))  0,        t > 0 

Hence, the pair (A,S) is  not compatible.  

But FASx
n
,SSx

n 
(t) = H (t – (2/n)) 

And, lim
n

g(FASx
n
,SSx

n 
(t)) =  g(H (t)) = 0  t0. 

Hence, the pair (A,S) is compatible of type (P-1). 

Similarly, the pair (A, S) is compatible of type (P-2).  

 From the above example it is obvious that S and T are mutually compatible but not compatible maps . 

Proposition 1.  Let B, T : X →  X be self maps of  a  N. A. Menger PM-space (X, F, ∗).   
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(a)  If B and T are compatible of type (P-1) and Bz = Tz for some z    X, then BTz = TTz  

(b)  If B and T are compatible of type (P-2) and Bz = Tz for some z    X, then TBz = BBz 

which implies that     TBz = BBz = BTz = TTz. 

Proof.  Suppose {xn} is a sequence in X defined by  xn = z, n = 1, 2, ... and Bz = Tz.  

Then we have,  Bxn → Bz, Txn → Tz  as  n → ∞   

Since (B, T) is compatible of type (P-1), we have 

  g(FBTz
 
,TTz (t))  = g(FBTx

n
,TTx

n
 (t)) → 0 as n → ∞     

i.e. BTz = TTz.              (1) 

Similarly, we can have 

 TBz = BBz.             (2) 

Hence, by (1) and (2), we have    BTz = TTz = TBz = BBz.  

Proposition 2.  Let B and T be self maps of a N. A. Menger PM-space (X, F, ∗) and {xn} is a sequence in X 

such that Bxn, Txn → z for some z in X as n → ∞ ,Then we have the following :  

(1) If the pair (B,T) is compatible of type (P-1) then  TTxn → Bz  if  B is continuous   at z.  

(2) If the pair (B,T) is compatible of type (P-2)  then  BBxn → Tz  if  T is  continuous at z 

Proof.    (i) Suppose T is continuous at z. 

Since  Bxn =  Txn =  z  for some z X  and     BTxn → Bz  as n → ∞. 

Since (B, T) is compatible of type (P-1), hence we have       

g(FBTx
n 
, TTx

n 
 (t)) → 0   as n → ∞. 

therefore             g(FBz, TTx
n
 (t)) ≤  g(FBz, BTx

n
  (t))  + g(FBTx

n
, TTx

n
  (t)) → 0 as n → ∞.   

Hence TTxn → Bz  as n → ∞   for all t > 0 

Similarly    BBxn →  Tz  

 

III. MAIN RESULT 

In the following, we extend the result of Cho et al. [2] to six self maps and generalize it in other respects too. 

Theorem 3.1.  Let A, B, S, T, L and M be self maps of a complete  non-Archimedean Menger PM  space  

(X, F, Δ) satisfying the conditions :  

(3.1)      L(X) ⊆ ST(X),  M(X) ⊆ AB(X) 

(3.2)   AB = BA, ST = TS, LB = BL, MT = TM; 

(3.3)   either AB or L is continuous;  

(3.4)       (L, AB) and (M, ST) are  mutually compatible of type (P)    

(3.5)  g(FLx,My(t)) ≤  (max{g(FABx,STy(t)), g(FABx, Lx(t)), g(FSTy, My(t)),   

½(g(FABx, My(t)) + g(FSTy, Lx(t)))}) 

for all t > 0 , where a function  : [0,+ ∞) → [0,+ ∞) satisfies the condition (Φ).       

Then A, B, S, T, L and M have a unique common fixed point in X.  
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Proof.  Let x0     X     From condition (3.1)   x1, x2  X  such that   

  Lx1 = STx2 = y1     and     Mx0 = ABx1 = y0.   

 Inductively, we can construct sequences {xn} and {yn} in X such that 

(3.6) Lx2n = STx2n+1 = y2n     and      Mx2n+1 = ABx2n+2 = y2n+1    for n = 0, 1, 2, ... .  

Step 1. We prove that   g(Fy
n
, y

n+1

(t)) = 0 for all t > 0.   

From (3.5) and (3.6), we have 

            g(Fy
2n

, y
2n+1

 (t))  = g(FLx
2n

, Mx
2n+1

(t))  

   ≤ (max{g(FABx
2n

, STx
2n+1

(t)), g(FABx
2n

, Lx
2n

(t)),  

    g(FSTx
2n+1

, Mx
2n+1

(t)), ½(g(FABx
2n

, Mx
2n+1

(t)) + g(FSTx
2n+1

, Lx
2n

(t)))}) 

   =   (max{g(Fy
2n-1

,y
2n

(t)), g(Fy
2n-1

, y
2n

(t)), g(Fy
2n

, y
2n+1

(t)),  

    ½(g(Fy
2n-1

, y
2n+1

(t)) + g(1))}) 

    ≤ (max{g(Fy
2n-1

, y
2n

(t)), g(Fy
2n

, y
2n+1

(t)), ½(g(Fy
2n-1

, y
2n

(t)) + g(F y
2n

, y
2n+1

(t))}). 

If   g(F y
2n-1

, y
2n

(t))  ≤  g(F y
2n

, y
2n+1

(t))  for all t > 0, then by (3.5) 

      g(F y
2n

, y
2n+1

(t))  ≤   g(F y
2n

,  y
2n+1

(t))), 

On applying Lemma 1,  we have   

   g(F y
2n

, y
2n+1

(t)) = 0  for all t > 0.      

Similarly, we have   

 g(F y
2n+1

, y
2n+2

(t)) = 0 for all t > 0.  

Thus, we have   g(F y
n
, y

n+1

(t)) = 0  for all t > 0.      

On the other hand, if  g(Fy
2n-1

,y
2n

(t)) ≥  g(Fy
2n

,y
2n+1

(t)), then by (3.5), we have 

 g(Fy
2n

,y
2n+1

(t))  ≤   (g(Fy
2n-1

,y
2n

(t)))  for all t > 0. 

Similarly,  g(Fy
2n+1

,y
2n+2

(t)) ≤  (g(Fy
2n

,y
2n+1

(t)))  for all t > 0. 

Thus, we have     

 g(Fy
n
,y

n+1

(t))  ≤    (g (Fy
n-1

,y
n

(t)))  for all t > 0  and  n = 1, 2, 3, … . 

Therefore, by Lemma 1,   

   g(Fy
n
, y

n+1

(t)) = 0  for all t > 0, which implies that {yn} is  a Cauchy sequence in X by Lemma 2. 

 Since (X, F, Δ)  is complete, the sequence {yn} converges to a point z   X. Also its subsequences 

converges as follows : 

(3.7)  {Mx2n+1} →  z   and {STx2n+1}   →  z,                                           

(3.8)  {Lx2n}  →  z     and     {ABx2n}  →  z. 
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Case I.   AB is continuous. 

As AB is continuous, and (L, AB) and (M, ST) are  mutually compatible,    

  (AB)2x2n  →  ABz     and        (AB)Lx2n → ABz. 

As (L, AB) is mutually compatible, so by Proposition 2,  we have 

  L(AB)x2n  →  ABz. 

Step 2.  Putting  x = ABx2n  and  y = x2n+1  for t > 0  in (3.5), we get 

 g(FLABx
2n

,Mx
2n+1

(t)) ≤  (max{g(FABABx
2n

,STx
2n+1

(t)), g(FABABx
2n

, LABx
2n

(t)),  

          g(FSTx
2n+1

, Mx
2n+1

(t)),  

          ½(g(FABABx
2n

, Mx
2n+1

(t)) + g(FSTx
2n+1

, LABx
2n

(t)))}). 

Letting n →∞, we get  

 g(FABz,z(t)) ≤   (max{g(FABz,z(t)), g(FABz, ABz(t)), g(Fz, z(t)),  

    ½(g(FABz, z (t)) + g(Fz, ABz (t)))}). 

i.e. g(FABz,z (t)) ≤  (g(FABz,z (t))) 

which implies that  g(FABz,z(t)) = 0 by Lemma 1 and so we have    

ABz =z. 

Step 3.  Putting  x = z   and   y = x2n+1  for t > 0  in (3.5), we get 

 g(FLz,Mx
2n+1

(t)) ≤   (max{g(FABz,STx
2n+1

(t)), g(FABz, Lz (t)),  

    g(FSTx
2n+1

, Mx
2n+1

(t)), ½(g(FABz, Mx
2n+1

(t)) + g(FSTx
2n+1

, Lz (t)))}). 

Letting n →∞  , we get  

  g(FLz,z (t)) ≤   (max{g(Fz,z (t)), g(Fz, Lz (t)), g(Fz, z (t)), ½(g(Fz, z (t)) + g(Fz, Lz (t)))}) 

i.e.          g(FLz,z (t)) ≤   (g(FLz,z (t))) 

which implies that  g(FLz,z (t)) = 0 by Lemma 1 and so we have  

  Lz = z. 

Therefore,  ABz = Lz = z. 

Step 4.  Putting  x = Bz   and  y = x2n+1  for t > 0  in (3.5), we get 

 g(FLBz,Mx
2n+1

(t))  ≤   (max{g(FABBz,STx
2n+1

(t)), g(FABBz, LBz (t)),  

    g(FSTx
2n+1

, Mx
2n+1

(t)), ½(g(FABBz, Mx
2n+1

 (t)) + g(FSTx
2n+1

, LBz (t)))}). 

As BL = LB,  AB = BA,  so we have   

 L(Bz) = B(Lz) = Bz  and   AB(Bz) = B(ABz) = Bz. 

Letting n →∞ , we get  

 g(FBz, z (t)) ≤   (max{g(FBz,z (t)),g(FBz, Bz (t)),g(Fz,z (t)), ½(g(FBz, z (t)) + g(Fz, Bz (t)))}) 

i.e    g(FBz, z (t)) ≤   (g(FBz, z  (t))) 

which implies that  g(FBz, z (t)) = 0  and so we have  Bz = z. 
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Also,  ABz = z  and so Az = z. 

Therefore,    Az = Bz = Lz = z.                              (3.9) 

Step 5.   As L(X)    ST(X),  there exists v   X such that z = Lz = STv.     

 Putting x = x2n and  y = v   for t > 0  in (3.5),  we get 

 g(FLx
2n

,Mv (t))  ≤   (max{g(FABx
2n

,STv (t)), g(FABx
2n

, Lx
2n

 (t)), g(FSTv, Mv (t)),  

     ½(g(FABx
2n

, Mv (t)) + g(FSTv, Lx
2n

 (t)))}). 

Letting n →∞  and using equation (3.8),  we get  

 g(Fz,Mv (t))  ≤     (max{g(Fz, z (t)), g(Fz, z (t)), g(Fz, Mv (t)), ½(g(Fz, Mv (t)) + g(Fz, z (t)))}) 

i.e. g(Fz,Mv (t)) ≤   (g(Fz,Mv (t))) 

which implies that  g(Fz,Mv (t)) = 0 by Lemma 1 and so we have  

  z = Mv. 

Hence,  STv = z = Mv.     

As (M, ST) is mutually compatible, we have 

 STMv = MSTv.         

Thus, STz = Mz. 

Step 6.    Putting  x = x2n, y = z   for t > 0  in (3.5),  we get 

 g(FLx
2n

,Mz (t)) ≤   (max{g(FABx
2n

,STz (t)), g(FABx
2n

, Lx
2n

,a(t)), g(FSTz, Mz (t)),  

     ½(g(FABx
2n

, Mz (t)) + g(FSTz, Lx
2n

 (t)))}). 

Letting n →∞  and using equation (3.8) and Step 5,  we get  

 g(Fz,Mz, a(t)) ≤   (max{g(Fz,Mz, a(t)), g(Fz, z, a(t)), g(FMz, Mz, a(t)),  

    ½(g(Fz, Mz, a(t)) + g(FMz, z, a(t)))}) 

i.e.    g(Fz,Mz,a(t)) ≤   (g(Fz, Mz, a(t))) 

which implies that  g(Fz, Mz, a(t)) = 0 by Lemma 1 and so we have z = Mz. 

Step 7.    Putting x = x2n   and  y = Tz    for t > 0  in (3.5),  we get 

 g(FLx
2n

,MTz (t)) ≤   (max{g(FABx
2n

,STTz (t)), g(FABx
2n

, Lx
2n

 (t)),  

    g(FSTTz, MTz (t)),  ½(g(FABx
2n

, MTz (t)) + g(FSTTz, Lx
2n

 (t)))}). 

 As MT = TM   and ST = TS,   we have  

MTz = TMz = Tz   and ST(Tz) = T(STz) = Tz. 

Letting n →∞  we get 

 g(Fz,Tz  (t)) ≤   (max{g(Fz,Tz (t)), g(Fz,z (t)), g(FTz,Tz (t)), ½(g(Fz,Tz (t)) + g(FTz,z (t)))}) 

i.e   g(Fz,Tz (t)) ≤   (g(Fz,Tz (t))), 

which implies that  g(Fz,Tz (t)) = 0 and so we have  z = Tz. 

Now     STz = Tz = z  implies  Sz = z.   

Hence   Sz = Tz = Mz = z.                           (3.10) 
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Combining (3.9)  and (3.10), we get  

  Az = Bz = Lz = Mz = Tz = Sz  =  z. 

 Hence, the six self maps have a common fixed point in this case. 

Similarly, it is clear that z is also the common fixed point of A, B, S, T, L and M in the case AB is continuous, 

and (L,AB) and (M,ST) are compatible of type (P-2) .            

Case II.   L is continuous, and  (L, AB) and (M,ST)  are mutually compatible. 

Since L is continuous, L2x2n  →  Lz    and    L(AB)x2n  → Lz. 

As (L, AB) is mutually compatible, so by Proposition 2,       

(AB)Lx2n  → Lz. 

Step 8.  Putting  x = Lx2n   and   y = x2n+1  for t > 0  in (3.5), we get 

 g(FLLx
2n

,Mx
2n+1

 (t)) ≤   (max{g(FABLx
2n

,STx
2n+1

 (t)), g(FABLx
2n

, LLx
2n

 (t)),  

    g(FSTx
2n+1

, Mx
2n+1

 (t)),  

½(g(FABLx
2n

, Mx
2n+1

 (t)) + g(FSTx
2n+1

, LLx
2n

  (t)))}). 

Letting n →∞,  we get  

 g(FLz,z (t)) ≤   (max{g(FLz,z (t)), g(FLz, Lz (t)), g(Fz, z (t)),  ½(g(FLz, z (t)) + g(Fz, Lz (t)))})  

i.e.   g(FLz,z (t)) ≤   (g(FLz,z (t))), 

which implies that  g(FLz,z (t)) = 0  and  we have Lz = z. 

Now, using steps 5-7 gives  us   Mz = STz = Sz = Tz  =  z. 

Step 9.   As  M(X)   AB(X),  there exists w    X such that   

   z =  Mz = ABw.      

Putting  x = w   and   y = x2n+1  for t > 0  in (3.5), we get 

 g(FLw,Mx
2n+1

 (t)) ≤   (max{g(FABw,STx
2n+1

 (t)), g(FABw, Lw (t)),  

    g(FSTx
2n+1

, Mx
2n+1

 (t)), ½(g(FABw, Mx
2n+1

 (t)) + g(FSTx
2n+1

, Lw (t)))}). 

Letting n →∞, we get  

 g(FLw,z (t)) ≤   (max{g(Fz, z (t)), g(Fz, Lw (t)), g(Fz, z (t)), ½(g(Fz, z (t)) + g(Fz, Lw (t)))}) 

i.e.  g(FLw,z (t)) ≤   (g(FLw,z (t))), 

which implies that  g(FLw,z (t)) = 0  and  we have  

  Lw = z. 

Thus, we have Lw  = z = ABw. 

Since (L, AB) is mutually compatible and so by Proposition 1,  we have 

LABw = ABLw  and hence, we have 

 Lz = ABz.  

Also, Bz = z  follows from step 4. 

Thus, Az = Bz = Lz =  z   and we obtain that z is the common fixed point of the six maps in this case also. 
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Similarly, it is clear that z is also a common fixed point of A, B, S, T, L and M in the case P is continuous, and 

(L,AB) and (M,ST) are compatible of type (P-2). 

Step 10. (Uniqueness)  Let u be another common fixed point  of A, B, S, T, L and M;  then     

  Au =  Bu = Su = Tu = Lu = Mu = u. 

Putting  x = z   and   y = u    for t > 0  in   (3.5), we get 

 g(FLz,Mu (t)) ≤   (max{g(FABz,Stu (t)), g(FABz, Lz (t)), g(FSTu, Mu (t)),  

    ½(g(FABz, Mu (t)) + g(FSTu, Lz (t)))}). 

Letting n →∞,  we get 

 g(Fz, u (t)) ≤   (max{g(Fz, u (t)), g(Fz, z (t)), g(Fu, u (t)), ½(g(Fz, u (t)) + g(Fu, z (t)))}) 

      =    (g(Fz, u (t))), 

which implies that  g(Fz,u (t)) = 0  and  we have  z = u. 

Therefore, z is a unique common fixed point of A, B, S, T, L and M. 

This completes the proof. 

Remark 3.1. If we take B = T = I, the identity map on X in theorem 1, then the condition  (3.2) is satisfied  

trivially and we get 

Corollary 3.1.  Let A, S,  L, M : X → X be mappings satisfying the condition :  

(a) L(X)   S(X),    M(X)  A(X);   

(b) Either A or L is continuous; 

(c)         (L, A) and (M, S) are mutually compatible of type (P)    

(d) g(FLx,My (t)) ≤   (max{g(FAx, Sy (t)), g(FAx, Lx (t)), g(FSy, My (t)),  

      ½(g(FAx, My (t)) + g(FSy, Lx (t)))}) 

for all t > 0, where a function      : [0,+ ∞) → [0,+ ∞) satisfies the condition (Φ).       

 Then A, S, L and M have a unique common fixed point in X.  

Remark 3.2. In view of remark 3.1, corollary 3.1 is a generalization of the result of Cho et. al. [2] in the  sense 

that condition of compatibility of the pairs of self maps in a non-Archimedean Menger PM-space has been 

restricted to compatible of type (P)  in a  non-Archimedean Menger PM-space and only one of the mappings of 

the compatible of type (P-1) or compatible of type(P-2) pair is needed to be continuous.  
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