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I. INTRODUCTION 

There have been a number of generalizations of metric space. One such generalization is Menger space initiated 

by Menger [4]. It is a probabilistic generalization in which we assign to any two points x and y, a distribution 

function Fx,y.  Schweizer and Sklar [8] studied this concept and gave some fundamental results on this space.  

Sehgal and Bharucha-Reid [9] obtained a generalization of Banach Contraction Principle on a complete Menger 

space which is a milestone in developing fixed-point theory in Menger space. 

Recently, Jungck and Rhoades [3] termed a pair of self maps to be coincidentally commuting or equivalently 

weakly compatible if they commute at their coincidence points. Sessa [10] initiated the tradition of improving 

commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces.  

Jungck [2] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger 

space has been introduced by Mishra [5].   

Cho, Sharma and Sahu [1] introduced the concept of semi-compatibility in a d-complete topological space.  

Popa [7] proved interesting fixed point results using implicit real functions and semi-compatibility in d-

complete topological space.  In the sequel, Pathak and Verma [6] proved a common fixed point theorem in 

Menger space using compatibility and weak compatibility. 

In this paper a fixed point theorem for six self maps has been proved using the concept of semi-compatible maps 

and occasionally weak compatible maps. 
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II. PRELIMINARIES 

 

Definition 2.1. A mapping F : R   R
+
 is called a distribution if it is non-decreasing left continuous with  

 inf { F (t) | t  R } = 0   and    sup { F (t) | t   R} = 1. 

 We shall denote by L the set of all distribution functions while H will always denote the specific 

distribution function defined by  

  
0, 0

( )
1, 0

t
H t

t


 


. 

Definition 2.2. A triangular  norm * (shortly t-norm) is a binary operation on the unit interval [0, 1] such that for 

all a, b, c, d [0, 1] the following conditions are satisfied : 

(a) a * 1 = a; 

(b) a * b = b * a; 

(c) a * b   c * d  whenever a  c  and b   d; 

(d) a * (b * c) = (a * b) * c. 

Examples of t-norms are a * b = max{a + b - 1, 0}  and a * b = min{a, b}. 

Definition 2.3. [8] A probabilistic metric space (PM-space)  is an ordered pair  

(X, F) consisting of a non empty set X and a function F : X × X L, where L is the collection of all distribution 

functions and the value of F at (u, v) X × X is represented by  Fu,v. The function Fu,v assumed to satisfy the 

following conditions: 

(PM-1)  Fu,v(x) = 1, for all x > 0, if and only if  u = v; 

(PM-2)  Fu,v (0) = 0; 

(PM-3) Fu,v = Fv,u; 

(PM-4)  If Fu,v (x) = 1 and Fv,w (y) = 1 then Fu,w (x + y) = 1, 

      for all u,v,w  X and x, y > 0.  

Definition 2.4. [8] A Menger space is a triplet (X, F, t) where (X, F) is a PM-space and * is a t-norm such that 

the inequality 

(PM-5)   Fu,w (x + y)   Fu, v (x) * Fv, w(y),   for all u, v, w X, x, y  0. 

Proposition 2.1. [9] Let (X, d) be a metric space. Then the metric d induces a distribution function F defined by 

Fx,y {t} = H(t - d(x,y)) for all x, y  X and t > 0. If t-norm * is a * b = min {a, b}  for all a, b  [0, 1] then  (X, F, 

*) is a Menger space. Further,  (X, F, *) is a complete Menger space if (X, d) is complete. 
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Definition 2.5. [5]  Let (X, F, *) be a Menger space and * be a continuous t-norm. 

(a) A sequence {xn} in X is said to be converge to a point  x in S (written  

xn  x) iff for every  > 0 and   (0,1), there exists an integer n0=n0 (, ) such that  

Fx
n

, x () > 1 -   for all n   n0. 

(b) A sequence {xn} in X is said to be Cauchy if for every  >0 and   (0,1),  there exists an integer n0 = n0(, 

)  such that Fx
n

, x
n+p

 () >1 -  for all n  n0 and p > 0. 

(c) A Menger space in which every Cauchy sequence is convergent is said to be complete. 

Remark 2.1.  If  * is a continuous t-norm, it follows from (PM-4) that the limit of sequence in Menger space is 

uniquely determined. 

Definition 2.6. [12] Self mappings A and S of a Menger space (X, F, t) are said to be weak compatible if they 

commute at their coincidence points i.e. Ax = Sx   for x  X  implies   

ASx = SAx. 

Definition 2.7. [5] Self mappings A and S of a Menger space (X, F, t) are said to be compatible if  FASx
n
, SAx

n
 (x) 

 1 for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn  u for some u in X, as n . 

Definition 2.8. [11] Self mappings A and S of a Menger space (X, F, t) are said to be semi-compatible  if   FASx
n
, 

Su (x)  1 for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn  u,  for some u in X, as n . 

 Now, we give an example of pair of self maps (S, T) which is semi-compatible but not compatible.  

Further we observe here that the pair (T, S) is not semi-compatible though (S, T) is semi-compatible. 

Example 2.1. Let (X, d) be a metric space where X = [0, 1] and (X, F, t) be the induced Menger space with 

Fp,q() = H( - d(p, q)),   p, q  X and   > 0.  Define self maps S and T as follows : 

 

1
0

2

1
1 1

2

x if x

Sx

if x


 

 
  


      and     

1
1 0

2

1
1 1

2

x if x

Tx

if x


  

 
  


 .      

Take xn = 
1 1

2 n
 .  Now,  

 FSx
n

,1/2 () = H( - (1/n)). 

Therefore,     lim
n

 FSx
n

,1/2 () = H() = 1. 

Hence,  Sxn  1/2 as  n .  

Similarly,  Txn  1/2 as n .   

Also 
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 FSTx
n

,TSx
n
() =  

1 1

2
H

n

  

   
  

   1,     > 0. 

Hence, the pair (S, T) is not compatible.  

Again,  lim
n

 FSTx
n
,Tx() =  lim

n
 FSTx

n
,1() = H( - |1-1|) = 1   > 0. 

Thus,  (S, T) is semi-compatible. 

 Now,  lim
n

 FTSx
n

,Sx(e)  1,    > 0. 

Thus, (T, S) is not semi-compatible. 

Remark 2.2. In view of above example, it follows that the concept of semi-compatibility is more general than 

that of compatibility.  

Definition 2.9. Self maps A and S of a Menger space (X, F, t) are said to be occasionally weakly compatible 

(owc)  if and only if there is a point x in X which is coincidence point of A and S at which A and S commute.  

Lemma 2.1. [12] Let {xn} be a sequence in a Menger space (X, F, *) with continuous t-norm * and t * t  t.  If 

there exists a constant k  (0, 1) such that  

 Fx
n
, x

n+1
(kt)  Fx

n-1
, x

n
 (t) 

for all t > 0 and n = 1, 2, 3, ..., then {xn} is a Cauchy sequence in X.  

III. MAIN RESULT 

Theorem 3.1. Let  A, B, S, T, L and M be self maps of a complete Menger space  (X, F, *) with  t* t  t 

satisfying : 

(3.1.1) L(X)   ST(X),  M(X)    AB(X); 

(3.1.2) AB = BA,   ST = TS,  LB = BL,  MT = TM; 

(3.1.3) either L or AB is continuous;  

(3.1.4) (L,  AB) is semi-compatible and (M, ST)  is occasionally weakly compatible; 

(3.1.5) there exists a constant  k  (0, 1) such that 

      F
2
Lx,My(kt)*[FABx,Lx(kt).FSTy,My(kt)]   [pFABx, Lx(t) + qFABx, STy(t)].FABx, My(2kt) 

for all  x, y  X  and  t > 0  where 0 < p, q < 1  such that p + q = 1. 

 Then A, B, S, T, L and M have a unique common fixed point in X. 

Proof. Suppose x0  X.  From condition (3.1.1)    x1, x2  X  such that   

  Lx0 = STx1   and     Mx1 = ABx2.   

 Inductively, we can construct sequences {xn} and {yn} in X such that 

 y2n = Lx2n = STx2n+1     and      y2n+1 = Mx2n+1 = ABx2n+2  for n = 0, 1, 2, ... . 

Step 1.  Taking x = x2n  and y = x2n+1 in (3.1.5), we have   
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F
2

Lx
2n

,Mx
2n+1

(kt)*[FABx
2n

,Lx
2n

 (kt).FSTx
2n+1

, Mx
2n+1

(kt)]  

     [pFABx
2n

, Lx
2n

(t) + qFABx
2n

, STx
2n+1

(t)].FABx
2n

, Mx
2n+1

(2kt) 

F
2
y
2n

, y
2n+1

 (kt)*[Fy
2n-1

,y
2n

(kt).Fy
2n

, y
2n+1

(kt)]   [pFy
2n

, y
2n-1

(t) + qFy
2n-1

, y
2n

(t)].Fy
2n

, y
2n+1

(2kt) 

Fy
2n

, y
2n+1

(kt)[Fy
2n-1

,y
2n

(kt) * Fy
2n

, y
2n+1

(kt)]   (p + q)Fy
2n

, y
2n-1

(t).Fy
2n-1

, y
2n+1

(2kt) 

Fy
2n

,y
2n+1

(kt)Fy
2n-1

, y
2n+1

(2kt)   Fy
2n-1

, y
2n

(t)Fy
2n-1

, y
2n+1

(2kt). 

Hence, we have 

 Fy
2n

, y
2n+1

(kt)   Fy
2n-1

, y
2n

(t). 

Similarly, we also have 

 Fy
2n+1

, y
2n+2

(kt)  Fy
2n

, y
2n+1

 (t). 

In general, for all n even or odd, we have 

 Fy
n
, y

n+1
(kt)   Fy

n-1
, y

n
 (t) 

for k  (0, 1) and all t > 0.  Thus, by lemma 2.1, {yn} is a Cauchy sequence in X.  Since (X, F, *) is complete, it 

converges to a point z in X.  Also its subsequences converge as follows : 

{Lx2n}    z,  {ABx2n}     z, {Mx2n+1}    z and  {STx2n+1}    z.            (3.1.6)     

Case I.   Suppose AB is continuous. 

 As AB is continuous and (L, AB) is semi-compatible, we get  

 LABx2n+2  Lz   and  LABx2n+2  ABz.                 (3.1.7) 

 Since the limit in Menger space is unique, we get 

 Lz = ABz.                      (3.1.8) 

Step 2.  By taking x = ABx2n  and  y = x2n+1 in (3.1.5), we have 

F
2

LABx
2n

,Mx
2n+1

(kt)*[FABABx
2n

,LABx
2n

 (kt).FSTx
2n+1

, Mx
2n+1

(kt)] 

   [pFABABx
2n

, LABx
2n

 (t) + qFABABx
2n

, STx
2n+1

(t)].FABABx
2n

, Mx
2n+1

(2kt). 

Taking limit n   

F
2
z,ABz(kt)*[FABz,ABz(kt).Fz, z(kt)]    [pFABz, ABz(t) + qFz, ABz(t)].Fz, ABz(2kt) 

                [p + qFz, ABz(t)]Fz, ABz(kt)] 

                     Fz, ABz(kt)    p + qFz, ABz(t) 

                 p + qFz, ABz(kt) 

                                                 Fz, ABz(kt)   
1

p

q
  = 1 

for k  (0, 1)  and all t > 0.  Thus, we have 

  z = ABz. 
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Step 3. By taking x = z and y = x2n+1 in (3.1.5), we have 

   F
2

Lz,Mx
2n+1

(kt)*[FABz,Lz(kt).FSTx
2n+1

, Mx
2n+1

(kt)]   [pFABz, Lz(t) + qFABz, STx
2n+1

(t)].FABz, Mx
2n+1

(2kt) 

Taking limit n  

F
2
z, Lz(kt)*[Fz,Lz(kt).Fz, z(kt)]   [pFz, Lz(t) + qFz, z(t)].Fz, z(2kt) 

                F
2

z, Lz(kt)*Fz,Lz(kt)   pFz, Lz(t) + q. 

Noting that  F
2

z, Lz(kt)   1 and  using (c) in Definition 2.2, we have 

    Fz, Lz(kt)   pFz, Lz(t) + q 

       pFz, Lz(kt) + q  

    Fz, Lz(kt)  
1

q

p
  =  1 

for k  (0, 1) and all t > 0.  Thus, we have z = Lz = ABz.  

Step 4. By taking x = Bz and y = x2n+1 in (3.1.5), we have 

F
2

LBz,Mx
2n+1

(kt)*[FABBz,LBz(kt).FSTx
2n+1

, Mx
2n+1

(kt)] 

  [pFABBz, LBz(t) + qFABBz, STx
2n+1

(t)].FABBz, Mx
2n+1

(2kt). 

Since AB = BA  and BL = LB,  we have 

 L(Bz) = B(Lz) = Bz      and  

 AB(Bz) = B(ABz) = Bz. 

Taking limit n , we have 

F
2
z,Bz(kt)*[FBz,Bz(kt).Fz, z(kt)]   [pFBz, Bz(t) + qFz, Bz(t)].Fz, Bz(2kt) 

   F
2
z,Bz(kt)   [p + qFz, Bz(t)]Fz, Bz(2kt) 

          [p + qFz, Bz(t)]Fz, Bz(kt) 

Fz,Bz(kt)      p + qFz, Bz(t) 

                    p + qFz, Bz(kt) 

                Fz,Bz(kt)  
1

p

q
   = 1 

for k  (0, 1) and all t > 0. 

Thus, we have 

    z = Bz.   

Since z = ABz, we also have 

 z = Az. 

Therefore,  z = Az = Bz = Lz.  

Step 5.  Since L(X) ST(X) there exists v  X such that 



International Journal of Advanced Technology in Engineering and Science                www.ijates.com  

Volume No.02, Issue No. 10, October  2014                                               ISSN (online): 2348 – 7550 

 

198 | P a g e  

 

  z = Lz = STv. 

 By taking x = x2n  and  y = v  in (3.1.5), we get 

F
2

Lx
2n

,Mv(kt)*[FABx
2n

,Lx
2n

 (kt).FSTv, Mv(kt)]    [pFABx
2n

, Lx
2n

 (t) + qFABx
2n

, STv(t)].FABx
2n

, Mv(2kt). 

Taking limit as n , we have  

 F
2
z,Mv(kt)*[Fz,z(kt).Fz, Mv(kt)]   [pFz, z(t) + qFz, z(t)].Fz, Mv(2kt) 

                 F
2

z,Mv(kt)*Fz,Mv(kt)   (p + q)Fz, Mv(2kt). 

Noting that  F
2

z, Mv(kt)   1 and  using (c) in Definition 2.2, we have 

 Fz, Mv(kt)   Fz, Mv(2kt) 

       Fz, Mv(t). 

Thus,  we have  

 z = Mv    and so  z = Mv = STv.   

Since (M, ST) is occasionally weakly compatible, we have  

 STMv = MSTv.  

Thus,  STz = Mz.  

Step 6. By taking x = x2n, y = z in (3.1.5) and using Step 5, we have 

F
2

Lx
2n

,Mz(kt)*[FABx
2n

,Lx
2n

 (kt).FSTz, Mz(kt)]    [pFABx
2n

, Lx
2n

 (t) + qFABx
2n

, STz(t)].FABx
2n

, Mz(2kt) 

which implies that, as n   

 F
2
z,Mz(kt)*[Fz,z(kt).FMz, Mz(kt)]   [pFz, z(t) + qFz, Mz(t)].Fz, Mz(2kt)  

       F
2

z,Mz(kt)   [p + qFz, Mz(t)]Fz, Mz(2kt) 

                                      [p + qFz, Mz(t)]Fz, Mz(kt) 

                                  Fz,Mz(kt)     p + qFz, Mz(t) 

                         p + qFz, Mz(kt) 

                                   Fz,Mz(kt)   
1

p

q
   = 1. 

Thus, we have z = Mz  and therefore  z = Az = Bz = Lz = Mz = STz. 

Step 7. By taking x = x2n, y = Tz in (3.1.5), we have 

  F
2
Lx

2n
,MTz(kt)*[FABx

2n
,Lx

2n
 (kt).FSTTz, MTz(kt)]   [pFABx

2n
, Lx

2n
 (t) + qFABx

2n
, STTz(t)].FABx

2n
, MTz(2kt). 

Since MT = TM  and ST = TS, we have 

 MTz = TMz = Tz   and   ST(Tz) = T(STz) = Tz.  

Letting n , we have  

 F
2
z, Tz(kt)*[Fz, z(kt).FTz, Tz(kt)]   [pFz, z(t) + qFz, Tz(t)].Fz,  Tz(2kt) 

                  Fz,Tz(kt)     p + qFz, Tz(t) 
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                       p + qFz, Tz(kt) 

                                Fz,Tz(kt)   
1

p

q
 = 1. 

Thus, we have z = Tz.  Since Tz = STz, we also have z = Sz. 

Therefore, z = Az = Bz = Lz = Mz = Sz = Tz, that is, z is the common fixed point of the six maps.  

Case II.  L is continuous.   

Since L is continuous,  LLx2n   Lz  and L(AB)x2n  Lz. 

Since (L, AB) is semi-compatible, L(AB)x2n  ABz. 

Step 8.  By taking x = Lx2n, y = x2n+1 in (b), we have 

 F
2

LLx
2n

,Mx
2n+1

(kt)*[FABLx
2n

,LLx
2n

 (kt).FSTx
2n+1

, Mx
2n+1

(kt)]  

    [pFABLx
2n

, LLx
2n

(t) + qFABLx
2n

, STx
2n+1

(t)].FABLx
2n

, Mx
2n+1

 (2kt) 

Letting n , we have  

 F
2
z, Lz(kt)*[FLz, Lz(kt).Fz, z(kt)]   [pFLz, Lz(t) + qFz, Lz(t)].Fz, Lz(2kt) 

                   F
2

z, Lz(kt)    [p + qFz, Lz(t)]Fz, Lz(2kt) 

                        [p + qFz, Lz(t)]Fz, Lz(kt),    

       Fz, Lz(kt)    p + qFz, Lz(t) 

                                     p + qFz, Lz(kt), 

                                  Fz, Lz(kt)    
1

p

q
 = 1. 

Thus, we have z = Lz  and using Steps 5-7, we have 

 z = Lz = Mz = Sz = Tz. 

Step 9. Since M(X)  AB(X), there exists v  X such that  

  z = Mz = ABv. 

 By taking x = v, y = x2n+1 in (3.1.5), we have 

F
2

Lv,Mx
2n+1

(kt)*[FABv,Lv(kt).FSTx
2n+1

, Mx
2n+1

(kt)]   [pFABv, Lv(t) + qFABv, STx
2n+1

(t)].FABv, Mx
2n+1

1(2kt). 

Taking limit as n , we have 

F
2
z,Lv(kt)*[Fz,Lv(kt).Fz, z(kt)]   [pFz, Lv(t) + qFz, z(t)].Fz, z(2kt) 

               F
2

z,Lv(kt)*Fz,Lv(kt)   pFz, Lv(t) + q  

                    pFz, Lv(kt) + q. 

Noting that  F
2

z, Lv(kt)   1 and  using (c) in Definition 2.2, we have 

 Fz,Mv(kt)   pFz, Lv(kt) + q, 
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 Fz,Mv(kt)     
1

q

p
 = 1. 

Thus, we have z = Lv = ABv. 

Since (L, AB) is weakly compatible, we have 

 Lz = ABz    and using Step 4, we also have z = Bz.  

Therefore, z = Az = Bz = Sz = Tz = Lz = Mz, that is, z is the common fixed point of the six maps in this case 

also. 

Step 10.  For uniqueness, let w (w  z) be another common fixed point of A, B, S, T, L and M.   

 Taking x = z,  y = w in (3.1.5), we have 

F
2

Lz,Mw(kt)*[FABz,Lz(kt).FSTw, Mw(kt)]   [pFABz, Lz(t) + qFABz, STw(t)].FABz, Mw(2kt) 

which implies that  

    F
2
z,w(kt)   [p + qFz, w(t)]Fz, w(2kt) 

      [p + qFz, w(t)]Fz, w(kt), 

    Fz,w(kt)   p + qFz, w(t) 

                  p + qFz, w(kt) 

  Fz,w(kt)    
1

p

q
  = 1. 

Thus, we have z = w. 

This completes the proof of the theorem.  

 If we take B = T = IX (the identity map on X) in theorem 3.1, we have the following: 

Corollary 3.2. Let A, S, L and M be self maps of a complete Menger space  

(X, F, *) with  t * t    t satisfying : 

(a) L(X)   S(X),  M(X)   A(X); 

(b) either L or A is continuous;  

(c) (L,  A) is semi-compatible and (M, S)  is occasionally weakly compatible; 

(d) there exists a constant  k  (0, 1) such that 

F
2

Lx,My(kt)*[FAx,Lx(kt).FSy, My(kt)]   [pFAx, Lx(t) + qFAx, Sy(t)].FAx, My(2kt) 

for all  x, y  X  and  t > 0  where 0 < p, q < 1  such that p + q = 1. 

 Then A, S, L and M have a unique common fixed point in X. 
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