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ABSTRACT
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I. INTRODUCTION

There have been a number of generalizations of metric space. Ope such generalization is Menger space initiated
by Menger [4]. It is a probabilistic generalization,in which we assign to any two points x and y, a distribution
function Fy,. Schweizer and Sklar\[8] stddied this.concept and gave some fundamental results on this space.
Sehgal and Bharucha-Reid [9] obtaingd a generalization of Banach Contraction Principle on a complete Menger

space which is a milestone in developing fixed-point theory in Menger space.

Reeeéntly, Jungck and Rhoades,[3] termed a pair of self maps to be coincidentally commuting or equivalently
weakly ‘compatible if they commute at their coincidence points. Sessa [10] initiated the tradition of improving
commutativity in, fixed-pointatheorems by introducing the notion of weak commuting maps in metric spaces.
Jungck [2] soon“enlarged this concept to compatible maps. The notion of compatible mapping in a Menger
space has been introduced by Mishra [5].

Cho, Sharma and Sahu [1] introduced the concept of semi-compatibility in a d-complete topological space.
Popa [7] proved interesting fixed point results using implicit real functions and semi-compatibility in d-
complete topological space. In the sequel, Pathak and Verma [6] proved a common fixed point theorem in

Menger space using compatibility and weak compatibility.

In this paper a fixed point theorem for six self maps has been proved using the concept of semi-compatible maps
and occasionally weak compatible maps.
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1. PRELIMINARIES

Definition 2.1. A mapping f : R — R" is called a distribution if it is non-decreasing left continuous with
inff{f(t)|[teR}=0 and sup{f(®)|te R}=1.
We shall denote by L the set of all distribution functions while H will always denote the specific

distribution function defined by

0, t<0
H(t)={l o

Definition 2.2. A triangular norm * (shortly t-norm) is a binary operation on the unit interval [0, 1] such that for

all a, b, ¢, d € [0, 1] the following conditions are satisfied :

@) a*l=a;

(b) a*b=b*a

(© a*b< c*d whenevera<c andb< d;
(d) a*(b*c)=(@*b)*c.

Examples of t-norms are a * b =max{a + b - a*b =min{a, b}.

Definition 23. [8] A is an ordered pair

functions and the value of £ at (u, v) € X x X is represented

he function F,, assumed to satisfy the

following conditions:

(PM-1) Fyu(x) =1, forall x>0, ifa

(PM-2)  Fuy

(PM'3) Fu,v = I:v,u;

IfF,v(X)=1a uw (X+Yy) =1,
forall uv,w € Xand x,y > 0.
Definition 2. ce is a triplet (X, £, t) where (X, £) is a PM-space and * is a t-norm such that

the inequality

(PM-5)  Fuw (X+¥W)= Fyy(X) *Fy w(y), forallu,v,we X, x,y>0.

Proposition 2.1. [9] Let (X, d) be a metric space. Then the metric d induces a distribution function F defined by
Fey {t} = H(t - d(x,y)) forall X,y € X and t> 0. If t-norm * isa * b = min {a, b} foralla, b € [0, 1] then (X, f,

*) is a Menger space. Further, (X, £, *) is a complete Menger space if (X, d) is complete.
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Definition 2.5. [5] Let (X, £, *) be a Menger space and * be a continuous t-norm.

(@ A sequence {x,} in X is said to be converge to a point X in S (written
X, — X) iff for every ¢ > 0 and A e (0,1), there exists an integer ng=n, (g, A) such that

Fx,x(e)>1-2 foralln> n.

(b) A sequence {x,} in X is said to be Cauchy if for every € >0 and A e (0,1), there exists an integer ny = ny(e,

2) suchthat Fy Xsp (e) >1-Aforalln>ngandp>0.

(c) A Menger space in which every Cauchy sequence is convergent is said to be co

Remark 2.1. If *is a continuous t-norm, it follows from (PM-4) that the limit of sequence in Menger space is

uniquely determined.

Definition 2.6. [12] Self mappings A and S of a Menger space ( i ible if they

commute at their coincidence points i.e.
ASX = SAX.

implies

FSXn,l/Z (e) = H(e - (1/n)).

Therefore, lim Fsy 1 (e) = H(e) = 1.
n—>w n

Hence, Sx, — 1/2 as n — oo.

Similarly, Tx, — 1/2asn — oo.

Also
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FSTxn,Tan(8) = H (8—(%—%D #1, Ve>0.

Hence, the pair (S, T) is not compatible.

Again, lim FSTX ’TX(S) = lim FSTX '1(8) = H(S - |1'1|) =1VvVe>0.
n—% n n—x n

Thus, (S, T) is semi-compatible.

Now, lim FTSX ’SX(e) #1, Ve>0.
n—o n

Thus, (T, S) is not semi-compatible.

Remark 2.2. In view of above example, it follows that the concept of semi-compatibility is more general than

that of compatibility.

Definition 2.9. Self maps A and S of a Menger space (X, f, t) are

(owc) if and only if there is a point x in X which is coincidence

Lemma 2.1. [12] Let {x,} be a sequence in a Menger sp andt*t>t If

there exists a constant k € (0, 1) such that

Frp (KO 2 By (0)

n’ “n+l n-1' "n
forallt>0andn=1,2,3, ..., then {x.}i
1. MAIN RESULT

Theorem 3.1. Let A, B, S, te Menger space (X, f, *) with t*t >t

satisfying :

forall x,y € X an where 0<p,gq<1 suchthatp+q=1.

Then A, B,'S, T, L and M have a unique common fixed point in X.
Proof. Suppose X, € X. From condition (3.1.1) 3 Xy, X, € X such that
Lxo=STx; and Mx; = ABXx..
Inductively, we can construct sequences {x,} and {y,} in X such that

Yon = LXon = STXzne1  aNAd  Yonir = MXonss = ABXpnep forn=0,1,2, ...

Step 1. Taking X = X, and Y = Xon41 in (3.1.5), we have
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F2 Ly Mgy (KO [Py, Ly, (KD Fs o iy, (KD
2 [PFagxy, Ly, (1) + AFaBx,, 5Ty, ,, (D]-Fagxy,, Mxy,,, (2KE)
F2V2n' Yon+1 (kt)*[FVZn-l’VZn(kt)'Fy2n’ y2n+1(kt)] 2 [pr2n’ y2n-1(t) * qu2n—1' Y2n(t)]'FV2n' an+1(2kt)
Fyon V2n+1(kt)[FV2n-1vV2n(kt) *Fy,. yZn+1(kt)] > (p+ q)FVva y2n-1(t)'Fy2n- 1 Yone 1(2kt)
Fyzn’V2n+1(kt) Fy2n—1' y2n+1(2kt) = Fy2n—1’ y2n(t)Fy2n-1' y2n+1(2kt)'
Hence, we have
Fyzn’ V2n+1(kt) 2 Fy2n—1' yzn(t)'

Similarly, we also have

I:V2n+1' y2n+2(kt) 2 Fyznv Yon+1 .

In general, for all n even or odd, we have
I:yn' yn+1(kt) 2 I:yn—l’ Yn (t)

for k 0 (0, 1) and all t > 0. Thus, by lemma 2.1, {y,

converges to a point z in X. Also its subsequenc

, F, *) is complete, it

{Lxan} =z, {ABXan} — Z, {MXoni1} (3.1.6)
Case I. Suppose AB is continuous.
(3.1.7)
(3.1.8)

Taking limit
2(Kt).Fz, 2(Kt)] > [pFasz, as:(t) + AF;, as(t)]-F2, as2(2Kkt)
> [p + gF; as(1)]F; as(KD)]

Fz agz(Kt) > p + qF; ag(t)

\%

p + gF;, ago(Kkt)

p
F, ago(kt) > — =1
lk) > 1

fork € (0, 1) and all t > 0. Thus, we have
z=ABz.
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Step 3. By taking X = z and y = X,p41 in (3.1.5), we have
F2l Mgy (KO *TF asz Lo (K)o i,y (KT 2 [PF gz, Lo(t) + AF sz, 51, (O] F az, wiy ,, (2KD)
Taking limitn — o
F2, La(kt)*[F,.(kt).F, (kt)] > [pF, L,(t) + aF, (t)].F,, ,(2kt)
F2,, L(KO)*F, (kD) = pF, () + .
Noting that FZZ, Lz(kt) < 1 and using (c) in Definition 2.2, we have
Fy 1a(kt) 2 pF, (1) +

> pF, L (kt) +q

9 -
Fuulk)2 7 = 1

fork € (0, 1) and all t > 0. Thus, we have z = Lz = ABz.
Step 4. By taking x = Bz and y = Xpp4 in (3.1.5), we have

FZLBZ,Mx2n+1(kt)*[FABBz,LBZ(kt)-FSTx2n+1, MXo 4

2 [pFasez, Leot) + Txonsy (D]-FABBZ Mxyp s
Since AB = BA and BL = LB, we have

L(Bz) =B(Lz) =Bz and

AB(Bz) = B(ABz) = Bz.
Taking limit n — oo, we have
F?, (K0 *[Faze2(KE),F (kO] > [
[P +aF, e(t)

qF,, s:(0)]F e

F, s2(kt)

fork € (0, 1) and all
Thus, we have
z=Bz.
Since z = ABz, we also have
z=Az.
Therefore, z=Az=Bz =Lz

Step 5. Since L(X) < ST(X) there exists v e X such that
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z=Lz=STv.
By taking X = X,, and y=v in (3.1.5), we get
F2 Ly, (KO *[F Ay, Ly, (KO- Fsy (K] 2 [PF gy, Ly, (1) + AF sy, sTu(D)]- s, mv(2K1).
Taking limit as n — oo, we have
F2, (K *[F o(kt).-Fo (k8] > [P, o(t) + O, (1)]-F, my(2KD)
F2 (KO *Fomu(Kt) 2 (p + Q)F, mu(2KE).
Noting that F%, w(kt) < 1 and using (c) in Definition 2.2, we have
Fzm(kt) = Fz, vu(2Kt)

2 Fz, Mv(t) .

Thus, we have
z=Mv andso z=Mv=STv.
Since (M, ST) is occasionally weakly compatible, we hav
STMv = MSTv.
Thus, STz =Mz.
Step 6. By taking X = Xz, y =z in (3.1.5)
FZsz”,r\/|z(kt)°"[|:ABx2n,|_><2n (kt).Fsrz, mz(kt)] >

which implies that, as n — o

Thus, we have z erefore z=Az=Bz=Lz=Mz=STz
Step 7. By taking X =)X5,, y = Tz in (3.1.5), we have
FZLXZn,MTZ(kt)*[FABXZn,Lx2n (kt).Fsrrz, mr(K)1 = [PFaBx,,, Lx,, () + OFagx,, sTT2(t)].-Fasx,,, MT2(2K1).

Since MT =TM and ST =TS, we have

MTz=TMz=Tz and ST(Tz)=T(STz)=Tz.
Letting n — oo, we have

F2 1K) *[F, (KO- Fr, 1a(kt)] > [PF, o(t) + GF;, ()., 72(2K1)

F,r(kt) > p+qgF,,(t)
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2 p + sz, Tz(kt)

p_
E k) > P =1
T2(KY) >1_q

Thus, we have z = Tz. Since Tz = STz, we also have z = Sz.

Therefore, z= Az=Bz =Lz =Mz =Sz =Tz thatis, z is the common fixed point of the six maps.
Case Il. L is continuous.

Since L is continuous, LLXp,— Lz and L(AB)Xy, — Lz.

Since (L, AB) is semi-compatible, L(AB)x,, — ABz.

Step 8. By taking X = LXop, Y = Xan41 in (b), We have

FZLLXZn,MX2n+1(kt)*[FABLX2n,LLX2n (kt) . I:STXZnJrl, Mx2n+1(kt)]

2 [PFABLIy,, Lk, () + AF ABLYG,, sTxy,, (D]-FasL
Letting n — oo, we have
Fzz, Lz(kt)*[FLZ, Lz(kt)-Fz, z(kt)] 2 [pFLz, Lz(t) *

Fzz, Lz(kt)

v

Fz, Lz(kt) 2

X such that

F2 (K [P (KO oK 2 [PF,, Lu(t) + AF, o()]-F, 2(2K0)
F2 (k) *Fou(kt) > PRy, (t) + 9
> pF,, Lu(kt) +q.
Noting that F%, |,(kt) < 1and using (c) in Definition 2.2, we have

Fzmv(kt) > pF Lu(kt) +q,
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Fo(kt) > ﬁ =1,
Thus, we have z = Lv = ABv.
Since (L, AB) is weakly compatible, we have
Lz =ABz and using Step 4, we also have z = Bz.

Therefore, z= Az =Bz =Sz =Tz = Lz = Mz, that is, z is the common fixed point of the six maps in this case
also.

Step 10. For uniqueness, let w (w = z) be another common fixed point of A, B, S, T d M.
Taking x =z, y =w in (3.1.5), we have
F2 L (Kt *[F agz L2(KD). Fstw, mw(K8)] = [PFagz, L2(t) + AF agz, stw()]-F agz, mw(2Kt)

which implies that

F2w(kt) > [P+ dF,, w(D]F, w(2KD)
2 [p+ qF, w(t)]F, w(kt),
Faw(kt) = p +gF,, w(t)

> p+ gFzw(kt)

p
Fouk) > —— =1,
W) > T

Thus, we have z = w.

This completes the proof of the

If we take B=T = Iy (t X) in theorem 3.1, we have the following:

self maps of a complete Menger space

Then A, S, L and M have a unique common fixed point in X.
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