International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No0.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550

A COMPARISON BETWEEN THREE SORTING
ALGORITHMS BASED
UPON THE TIME COMPLEXITY

Shweta Popli', Arshi Talwar?, Sneha Gupta®
123 Dronacharya College Of Engineering

ABSTRACT

This research paper presents the different types of sorting algorithms of data structures like bubble sort,
insertion sort and selection sort and also give their performance analysis with respect.tostime complexity. These
four sorting algorithms have been an area of focus for a long time but'stilhthe question'remain same of which to
use when ? which is the main reason to perform this research. Fhis research paper provides the detailed study

of the algorithms and compares them on the basis of time complexity to reach/the conclusion
Keywords- bubble sort, selection sort, insertion soxf, time'gomplexity.
I. INTRODUCTION

In computer science, a sorting algorithm is an‘efficient algorithm which performs an important task that puts
elements of a list in a certain order or arranges a collection of itemsyinte’a particular order. Sorting data has been
developed to arrange the array'values,in various ways for a database. Sorting algorithms are an important part of
managing data. Sorting algorithms are‘open’preblems and many researchers in past have attempted to optimize
them with optimal space and time 'Scale.Magst'sorting algerithms work by comparing the data being sorted.
Sorting algorithms are usually judgediby'their efficiency. In this case, efficiency refers to the algorithmic
efficiency as the size ofithe input grows, large and is generally based on the number of elements to sort. Most of

the alggrithms in use have an algorithmigefficiency of either O (n*2) or O(n*log(n)).
1. BUBBLE SORT

Bubble sort is anialgerithm which is used to sort the n elements in an array. It compares all the elements one by
one and sort them. [tiis called bubble sort because in each iteration the smaller element bubbles up towards the

first place. It takes place by comparing the adjacent data items and swapping each pair.

2.1 Working Procedure Of Algorithms

5 1 G 2 4 a Lets take this Array

5 1 6 2 4 3

N — Hera we can sae the Array

1 5 G 2 4 3 after the first iteration

5 6 3 :

L h 2 : Similarly, after other

1 5 ? 4 6] consecutive iterations, this
— array will get sorted

1 5 2 4 3 6

643|Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550

2.2 Algorithm
Read the array
inti,j,temp;
for(i=0;i<n-1;i++)
{
for(j=0;j<n-i-1;j++)
{
if(a[j]>?a[j+1])
{
temp=a[j];

afj]=afj+1];
a[j+1]=temp;
}
}
}
2.3 Complexity

In bubble sort n-1 comparisons will be done in 1* 2" pass and so on,
The total number of comparisons will be
(n-1)+(n-2)+(n-3)+........... +3+2+1
Sum=n(n-1)/2

i.e O(n%)
I11. INSERTION SORT

shifting the elements one by one. The characterstics of

Lets take this Array

A3 we can see hate, in

g msertion sof. we pck up a
L ™ Key. and cOmpares 4 with
wlemerts ahead of it and
puls the key in the nght

1 5 (8 2 4 3 place
1.5 6 (2) 4 3
i ™™ & has nothing belore it
1 2.5 6 W 3
Sl 1 is compared 10 5 and 15
1 2.4 5 6 (3 nserted before 5
i 15 grester than 5 and 1
218 smalles than 6 and 5
(Alwarys we stan with the second but graater than 1. 50 its is
slemant a5 kay) msened after 1

And this goes on

644 |Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550
3.2 Algorithm
Read the array
inti,j,temp;
for(i=1;i<n-1;i++)
{
temp=a[i];
=i
while(j>0 && temp<a[j])
{
afj+1]=a[j];
o
}
afj+1]=temp;

3.3 Complexity

To insert last element we require n-1 comparisons

To insert n-1% element we require n-2 comparis d n-2 movements
To sum up
2°(142+3+...... n-1) = 2" (n-1)"n/2 = (n-1)

If the greater part of array is serted the complexity is O(n).

So the average complexity is

ithm. This algorithm finds the most smallest elements and exchanges it
nds the second smallest element and exchanges it with the element

goes on.

4.1 WORKI E OF ALGORITHM

Onpes Abar 152 Aler 2t A Wt Ay amn FUSE
Aty pass s paes s Fans

@ @ ; -l_ J 4]
¢ : @ ¢ ® %
5 [@ £ i

In the first pass , the smallest element found is 1, so it is placed at the first position , then leaving the first

element , smallest element is searched form rest of the elements , 3 is the smallest , so it is placed at the second

645|Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550
position. Then leaving 1 and 3, from rest of the elements we search for the smallest element and put it in the

third position , keep doing this until the array is sorted.

4.2 Algorithm

Read the array

for(i=0;i<n-2;i++)

{
for(j=i+1;j<n-1;j++)
{
if(a[i]>a[j])
{

temp=a[i];
afi]=alj];
a[j]=temp;

4.3 Complexity

T(n)=n+(n-1)+(n-2)+.............
forth. it ends up looking like this:-

and next to last terms, and so

T(n)=[n+1]+[(n-1)+2]+[(n-2)

V. CLUSION

> Bubb

’ Bubble sort Comparisons
Best case O(n*2)
Average case O(n*2)
Worst case O(n*2)

v’ It takes several passes to sort the elements in an array.
v' Every pass need to do comparisons between the elements and exchange the data if the elements are not in right

order.

646 |Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550

v" Hence the complexity of bubble sort is same in all the cases.

> Selection Sort

Selection Sort Comparisons

Best case O(n*2)
Average case O(n*2)
Worst case O(n*2)

v' The time complexity of selection sort is same in all the cases.

v' The efficiency of selection sort does not depend upon the initial arrangement of the data.

> Insertion sort

Insertion Sort

Best case

v' Adaptive (i.e., efficient) for data sets that are alrea

where d is the number of inversions.

sort or bubble sort; the best orted input) is O(n).

d D.S salaria.

search

647 |Page

