RANDOM KEY & THE NTH PRIME NUMBER BASED SYMMETRIC KEY ENCRYPTION ALGORITHM

Mrs Mukta Sharma1, Dr. R B Garg2
1Department of Computer Science, Research Scholar, TMU, Moradabad (India)
2Ex-Professor, Department of Computer Science, Delhi University, Delhi (India)

ABSTRACT

The Online Banking Service is used extensively across the globe. Implementing security features for those networks are very critical as the communication is done via an insecure channel i.e. Internet. So there are more requirements to secure the data transmitted over different networks using different services. Different encryption methods are used to provide the security to the network and data. Encryption is the process of changing plain readable text into unreadable cipher text. Cryptographic algorithms play a vital role in the field of network security. There are two basic types of cryptosystems such as symmetric cryptosystems and asymmetric cryptosystems. Symmetric cryptosystems are characterized by the fact that the same key is used in encryption and decryption transformations. Asymmetric cryptosystems use complementary pairs of keys for encryption and decryption transformations. One key, the private key is kept secret like the secret key in a symmetric cryptosystem. The other key, the public key, does not need to be kept secret [1]. This paper focuses on designing an encryption algorithm to secure the online transactions. As many users are a continually growing financial service of electronic commerce, Internet banking requires the development & implementation of a sound security algorithm.

Keywords: Cryptography, Symmetric & Asymmetric Cryptography, Plain Text, Cipher Text

I. INTRODUCTION

For the first few decades, internet was primarily used by military & university. Now millions of users are using internet today for a large variety of commercial and non-commercial purposes. Therefore, it is essential to secure the internet from various threats, spywares, malwares, hackers, phishers etc. Internet security is not about protecting hardware or the physical environment. It is about protecting information [1]. Ensuring the security is a serious business on which various researches are going on. One way to secure transmission is to use cryptography.

Cryptography has been derived from two Greek words Crypto (Secret) & Graphs (Writing) which means “Secret Writing”. Cryptography allows secure transmission of private information over insecure channels. It is the art or science encompassing the principles and methods of transforming an intelligible message into one that is unintelligible and then retransforming that message back to its original form. It is the mathematical “scrambling” of data so that only someone with the necessary key can “unscramble” it.
1.1. Characteristics of Cryptography

1. AUTHENTICITY: Is the sender (either client or server) of a message who they claim to be?
2. PRIVACY: Are the contents of a message secret and only known to the sender and receiver?
3. INTEGRITY: Have the contents of a message been modified during transmission?
4. NON-REPUDIATION: Can the sender of a message deny that they actually sent the message? It is the ability to limit parties from refuting that a legitimate transaction took place, usually by means of a signature.

1.2. Basic Terminology

- Plain text - the original message
- Cipher text - the coded message
- Cipher - algorithm for transforming plaintext to cipher text
- Key - info used in cipher known only to sender/receiver
- Encipher (encrypt) - converting plaintext to cipher text
- Decipher (decrypt) - recovering cipher text from plaintext
- Cryptography - study of encryption principles/methods
- Cryptanalysis is (code breaking) - the study of principles/methods of deciphering cipher text without knowing key
- Cryptology - the field of both cryptography and Cryptanalysis

Fig. 1: Type of Keys

Secret key or Symmetric key - In this sender and receiver possess the same single key. It can be divided into stream ciphers and block ciphers. Stream cipher encrypts a single bit of plain text at a time, whereas block cipher encrypts a number of bits as a single unit.

Public key or Asymmetric key - Involves two related keys called a key-pair: one public key known to anyone and one private key that only the owner knows.
II. THE GROUND WORK

Beginner’s view about the algorithm was to make some use of the ASCII numbers & the Prime numbers. Considering a character as plain text & n as ASCII Value of character the Cipher Text can be nth Prime Number. But this had big flaw of no Key being used. So, easiest to decrypt. Certainly some key was to be used. Then different approaches were taken before finalizing the Key for the process. Considering a complete String coming as a Plain Text.

Approach – I - Minimum Value
Take ASCII values of characters in string.
Find the Minimum of them.
Key = Minimum Value.

Flaws:
In a large text, zero has the highest probability of coming out as minimum value.
Same key will generate same cipher text every time.
Space Complexity of an array.

Approach - II - Mid-Value
Take ASCII values of characters in string.
Sort the array.
Find the Mid value of them.
Key = Mid-Value.

Flaws:
Two different users interacting with the system will have same key for same string being entered.
Example
However, for being more secure both should have different cipher text.

Approach - III – Random Number
Random Number
Key = Absolute Value of Random Number.
This Approach was able to resolve the issues discussed in previous two approaches.

For any analysis purpose, it was necessary to observe the values of the variables with respect to reference variables and henceforth, the variables were correlated using repeating variable method (Edward, 2005). As mentioned above, total number of variables considered for present investigation, ‘6’. Three out of 6 variables were considered as fundamental variables and a functional relationship was established as Φ (V, W, D, F, B, G)
The derived groups were, \(V/(D^2.F) \), \(B/D \) and \(G/(D^2.F) \). The relationship obtained using Buckingham Pi Theorem as, \(G/(D^2.F) = f (B/D, V/D^2F) \). Crack growth rate for specimen at fixing length 400 mm, 350 mm and 300 mm were calculated at frequency of 60 Hz, 80 Hz, 100 Hz and 120 Hz. Calculated value of ‘G’ were further calculated and plotted for useful analysis.

III. PROPOSED ENCRYPTION ALGORITHM

The algorithm has two main steps:

Step One: Generate a Key.

- Generate A Random Number. (16 bits)
- Get Absolute Value of the Number generated

Key = \(\text{Abs} (\text{RandomNo.}) \)

So, the Algorithm is generating a 32 bits key for a plain text of 16 bits.

Step Two: Generate Cipher text using the Key, Prime No & the Plain Text.

Initialize \(\text{nthPrime} \) as ascii value of character of plain text & Cipher text as 0

The Objective is to find the \(\text{nth Prime Number after the “Key”} \).

For Example: Key generated is “4”

character entered is Space i.e. “A”

The ASCII Value = 65.

i.e. We need to find 65th Prime Number after 4.

Obtained Value: 331, which is a 32nd Prime Number post 4.

Add Constant to the Obtained value to give a Cipher Text. Constant can be the last 2 digits of the Key.

Pictorial Representation of Encryption Algorithm

![Fig. 2: Conversion of Plain Text to Cipher Text](image_url)
Note: As we go higher in numbers the Prime Numbers turn sparse. The notion to add a Constant to the obtained prime number is to offer a larger set of Natural Numbers.

<table>
<thead>
<tr>
<th>Key(Random No.)</th>
<th>Plain Text</th>
<th>Ascii value</th>
<th>nthPrime post Key</th>
<th>Add Constant (Eg. 2)</th>
<th>Cipher Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>65</td>
<td>331</td>
<td>333</td>
<td>333</td>
</tr>
</tbody>
</table>

Table1: Encryption Table

Pseudo Code for Step Two:

SET nthprime=0
SET Key=RandomNumber
GET Key = DETERMINE(AbsoluteValue(Key))
INIT Ciphertext =0
READ plaintext
FOR 1 to sizeof(plaintext)
SET nthVal = ascii(plaintext[i])
SET P=Key, count = 0
FOR P to count!=nthVal
SET status=1
IF P==2
nthprime=i
count++
ELSE IF P%2==0
nthprime=0
ELSE
FOR j = 3 j <= Math.sqrt(i) j+=2
IF P%j == 0
status = 0;
BREAK
IF status != 0
nthprime=i;
count++; status = 1;
FOREND
retStr.ADD(nthprime);
FOREND
Ciphertext = nthPrime+ Constant
IV. DECRYPTION ALGORITHM

Steps

• Obtain the Key.
• Read the Cipher Text.
• Subtract the CONSTANT from the Cipher Text. Obtain the value which is nth prime number post Key.
• The Decryption algorithm executes till the time it is able to generate the same nthPrime Number as obtained in step (iii). Keep a counter of it.
• Counter gives the ascii value.
• Get character from the obtained ascii value.

\[
\text{PlainText} = \text{Character.to}String((\text{char}) \text{counter(CipherTxt} - \text{CONSTANT })
\]

Fig. 3: Conversion of Cipher Text to Plain Text

<table>
<thead>
<tr>
<th>Key (Random No)</th>
<th>Cipher Text</th>
<th>Nth Prime Post Key (Subtracted 2)</th>
<th>Counter</th>
<th>Plain Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>333</td>
<td>331</td>
<td>65</td>
<td>A</td>
</tr>
</tbody>
</table>

Table 2: Decryption Table

Pseudo Code:

READ cipher
INIT i=0;
INIT count;
INIT nthprime=0;
FOR SET i=key, count=0 nthprime!=cipher
 INIT status=1
 IF(i==2)nthprime=i
 count++
 ELSEIF i%2==0
nthprime=0
ELSE
FOR SET j = 3 , j <= Math.sqrt(i), j+=2
IF i%j == 0
status = 0
BREAK
FOREND
IF status != 0
nthprime=i
count++
status = 1
return plaintext.

Both the Algorithms are implemented in Eclipse IDE, Java 1.6 on Dell Laptop with Configuration: Intel Core i5 @2.60GHz 4GB RAM and 64 bit Windows 7 OS.

Fig 4: Screen Shot of the Encryption Implementation Code
V. CONCLUSION

The proposed algorithm implements a good strategy of making most out of the advantages of prime numbers and ASCII values. The Space complexity has also been dealt as an essential objective to be met in this algorithm.

In cryptography, key size or key length is the size measured in bits of the key used in a cryptographic algorithm (such as a cipher). An algorithm's key length is distinct from its cryptographic security, which is a logarithmic measure of the fastest known computational attack on the algorithm, also measured in bits. The security of an algorithm cannot exceed its key length (since any algorithm can be cracked by brute force), but it can be smaller. Most symmetric-key algorithms in common use are designed to have security equal to their key length.[3] The proposed algorithm is based on 32 bit key generation for a 16 bit plain text. Hence meeting the minimum requirement of the symmetric-key algorithm key generation factor.

FUTURE SCOPE

In the future work related to proposed algorithm, the encrypting and decrypting data with least execution time. The concept of block wise parallel encryption using multithreading technique can enhance the speed of encryption system.
REFERENCES

Biographical Notes

Mr. Md. Meraz is presently pursuing M. Tech. final year in Mechanical Engineering Department (Specialization in Machine Design) from B.I.T Sindri, Dhanbad, India.

Mr. J. N. Mahto is working as a Assistant Professor in Mechanical Engineering Department, B.I.T Sindri, Dhanbad and presently pursuing Ph. D. from B.I.T sindri, Dhanbad, India.

Dr. R. S. Prasad is working as a Professor & Head in Mechanical Engineering Department, RKGIT, Ghaziabad, India.

Dr. S. C. Roy is working as a Professor & Head in Mechanical Engineering Department, B.I.T Sindri, Dhanbad, India.

Mr Vivek Sagar is presently pursuing M. Tech. final year in Mechanical Engineering Department (Specialization in Machine Design) from B.I.T Sindri, Dhanbad, India.