
International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.02, Issue No. 09, September 2014 ISSN (online): 2348 – 7550

245 | P a g e

A REVIEW ON GRAPHS IN DATA STRUCTURES

Ayush Bansal
1
,

Abhishek Nehra

2
,

Anurag Vats

3

1, 2, 3
 Student (B.tech 3

rd
sem) Department of Computer Science Engineering Dronacharya College of

Engineering Gurgaon-123506, (India)

ABSTRACT

In computer science, a data structure is a particular way of organizing data in a computer so that it can be used

efficiently. One of the most important structures used in this field is a graph which is formed by nodes and

edges. Graphs prove to be beneficial in problems concerned with objects which are related to each other in

some manner. Frequent use of graphs in practice has led to extensive research in "graph theory", in which

there is a large number of known problems for graphs and for most of them there are well-known solutions. This

paper gives a review on the graphs in data structures including the terminology used in graph theory. The paper

also discusses the different types of graphs available in data structures.

Keywords: Graph, Algorithms, Edge, Endpoint, Data Structures.

I. INTRODUCTION

A graph is a mathematical structure consisting of a set of vertices (also called nodes)

and a set of edges . An edge is a pair of vertices

. The two vertices are called the edge endpoints. Graphs are ubiquitous in

computer science. They are used to model real-world systems such as the Internet (each node represents a router

and each edge represents a connection between routers); airline connections (each node is an airport and each

edge is a flight); or a city road network (each node represents an intersection and each edge represents a block).

The wireframe drawings in computer graphics are another example of graphs.

A Labeled Graph for 6 Vertices and 7 Edges.

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.02, Issue No. 09, September 2014 ISSN (online): 2348 – 7550

246 | P a g e

The graphs are very useful and fairly common data structures. They are used to describe a wide variety of

relationships between objects and in practice can be related to almost everything. As we will see later, trees

are a subset of the graphs and also lists are special cases of trees and thus of graphs, i.e. the graphs represent a

generalized structure that allows modeling of very large set of real-world situations.

The circles in Fig. 1 are known as vertices (nodes) and the arrows connecting them are directed edges. The

vertex of which the arrow comes out is called predecessor of that the arrow points. For example “19” is a

predecessor of “1”. In this case, “1” is a successor of “19”. Unlike the structure tree, here each vertex can have

more than one predecessor. Like “21”, it has three – “19”, “1” and “7”. If two of the vertices are connected with

edge, then we say these two vertices are adjacent through this edge.

II. GRAPHS IN DATA STRUCTURES

A graph may be either undirected or directed. Intuitively, an undirected edge models a "two-way" or "duplex"

connection between its endpoints, while a directed edge is a one-way connection, and is typically drawn as an

arrow. A directed edge is often called an arc. Mathematically, an undirected edge is an unordered pair of

vertices, and an arc is an ordered pair. For example, a road network might be modelled as a directed graph,

with one-way streets indicated by an arrow between endpoints in the appropriate direction, and two-way streets

shown by a pair of parallel directed edges going both directions between the endpoints.

III. REPRESENTATION OF GRAPHS

Different data structures for the representation of graphs are used in practice:

 Adjacency list

Vertices are stored as records or objects, and every vertex stores a list of adjacent vertices. This data

structure allows the storage of additional data on the vertices. Additional data can be stored if edges are

also stored as objects, in which case each vertex stores its incident edges and each edge stores its

incident vertices.

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.02, Issue No. 09, September 2014 ISSN (online): 2348 – 7550

247 | P a g e

 Adjacency matrix

Adjacency matrix is a two-dimensional matrix, in which the rows represent source vertices and

columns represent destination vertices. Data on edges and vertices must be stored externally. Only the

cost for one edge can be stored between each pair of vertices.

 Incidence matrix

Incidence matrix is a two-dimensional Boolean matrix, in which the rows represent the vertices and

columns represent the edges. The entries indicate whether the vertex at a row is incident to the edge at

a column.

The following table gives the time complexity cost of performing various operations on graphs, for each of these

representations. In the matrix representations, the entries encode the cost of following an edge. The cost of

edges that are not present are assumed to be .

Adjacency list Adjacency matrix Incidence matrix

Storage

Add vertex

Add edge

Remove vertex

Remove edge

Query: are vertices u, v

adjacent? (Assuming

that the storage

positions for u, v are

known)

Remarks

When removing edges or

vertices, need to find all

vertices or edges

Slow tor remove

vertices, because

matrix must be

resized/copied

Slow to add or remove

vertices and edges,

because matrix must be

resized/copied

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.02, Issue No. 09, September 2014 ISSN (online): 2348 – 7550

248 | P a g e

Adjacency lists are generally preferred because they efficiently represent sparse graphs. An adjacency matrix is

preferred if the graph is dense, that is the number of edges |E| is close to the number of vertices squared, |V|
2
, or

if one must be able to quickly look up if there is an edge connecting two vertices.

A) Directed Graph

The number of edges with one endpoint on a given vertex is called that vertex's degree. In a directed graph,

the number of edges that point to a given vertex is called its in-degree, and the number that point from it is

called its out-degree. Often, we may want to be able to distinguish between different nodes and edges. We

can associate labels with either. Such a graph is called labeled.

B) Undirected Graphs

In a directed graph, the edges point from one vertex to another, while in an undirected graph, they merely

connect two vertices.

C) Weighted Graphs

We may also want to associate some cost or weight to the traversal of an edge. When we add this

information, the graph is called weighted. An example of a weighted graph would be the distance between

the capitals of a set of countries. Directed and undirected graphs may both be weighted. The operations on a

weighted graph are the same with addition of a weight parameter during edge creation.

VI. CONCLUSION

Graphs are very important in data structures. Graph theory is an integral part of data structures that offers

solutions to a wide range of problems and is thus extensively used. In this paper we have reviewed the basics of

graphs and the types of graphs in data structures.

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.02, Issue No. 09, September 2014 ISSN (online): 2348 – 7550

249 | P a g e

REFERENCES

[1] http://en.wikipedia.org/wiki/Graph_(abstract_data_type)

[2] http://stackoverflow.com/questions/14296415/whats-the-complexity-of-going-from-one-graph-

representation-to-another

[3] http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-17-trees-and-graphs/

[4] http://en.wikipedia.org/wiki/Data_structure

[5] http://gr12computers.wikispaces.com/Graph+Theory

[6] http://howtoprogramwithjava.com/the-5-basic-concepts-of-any-programming-language-concept-3/

[7] http://technicalsanju.blogspot.com/

[8] http://www.exforsys.com/tutorials/c-algorithms/graph-theory.html

