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ABSTRACT 

Bug-tracking mechanism is employed in software development houses to track the bugs in the software. We are 

aimed at distinguishing the very fast and the very slow bugs so as to prioritize them while working on them. We 

computed our prediction model using Naïve Bayes classifier. Simply relying on shared lists and email to monitor the 

status of defects is error-prone approach and the possibility is that the bug judged by developer to be unsignificant 

is ignored. 

Bug Tracking System or Defect Tracking System is an ideal solution for individual or groups of developers to track 

the bugs of a product, solution or an application.  

 The Bug Tracking System can dramatically increase the productivity and accountability of individual employees by 

providing a documented target based workflow and positive feedback for good performance. 

Bug Tracking System allows below functionalities: 

1. Creating & Changing Bugs at ease 

2. Query Bug List to any depth 

3. Reporting & Charting in more comprehensive way 

4. Multi-level Priorities & Severities. 

5. Attachments & Additional Comments for more information 

 

I INTRODUCTION 

In a Bug Tracking System, some Bug Reports are labeled as security bug reports (SBRs), whose associated bugs are 

found to be security problems. These SBRs must be fixed on priority than not-security bug reports (NSBRs), the 

subset of BRs that are believed not to have a security impact. Correctly labeling and fixing SBRs among BRs 

submitted to a BTS is important in security practice so that there is no delay causing serious damage to software-

system stakeholders. The likelihood of unlabeled SBRs in a BTS could be high for at least three reasons. 

1) If bug reporters perceive a subtle security bug that they are reporting in a BR as an innocuous not-security 

bug, then they may label the BR as an SBR. 
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2) Some security bugs described in BRs are associated with recommended mitigations that may be unknown 

to bug reporters. 

3) Bug related to general reliability problems can also be related to security problems and a bug reporter 

without sufficient security knowledge may report this bug as a NSBR.  

Therefore, there remains a strong need of effective tool support for reducing human efforts in this process of 

identifying SBRs in a BTS, enabling this important security practice of SBR identification in either industrial or 

open source settings. 

II LITERATURE REVIEW 

C. Code Search and Recommendation Using Stackoverflow Zagalsky et al. describe a code search and a 

recommendation tool called as Example Overflow which mines information present in Stack Overflow (Q&A 

website for programmers) [12]. Their work is motivated by the need to minimize context switch between 

development environment and code-search tools. 

In context to existing work, the study presented in this paper makes the following novel contributions: 

1) The work described in this paper is the first focused study on integration of issue tracking systems with 

community driven question and answering websites such as Stack overflow. While there has been work in the area 

of code-editors & development environment integration (Section II-A) with Stack overflow as well as code-editor 

integration with web-search and external websites (Section II-B), the integration of Stack overflow with issue 

tracking systems is a unique research direction. 

2) We present experimental results (based on a series of experiments conducted on publicly available dataset from 

two popular, large, complex and open-source projects: Google Chromium and Android) indicating presence of 

several links to Stack overflow question & answers facilitating the process of bug resolution. We conduct a 

characterization study and present our perspective on the correlation between Stack overflow references and mean 

time to repair a bug, top domains in issue tracking system threaded discussion forums and illustrative examples 

showing links to various Web 2.0 platforms in addition to Stackoverflow. 

3) We present a solution based on analyzing textual eatures (textual similarity between bug report title and 

Stackoverflow questions) and contextual features (such as question tags representing the topic) to recommend a 

Stackoverflow question in response to a bug report. We believe that a recommendation engine (tool support) that 

automatically suggests relevant Stackoverflow knowledge-base to developers can save time during bug resolution. 

We present the proposed solution and empirical results ((performance evaluation and validation)) demonstrating the 

effectiveness of the method on dataset containing the ground-truth. 

4) A survey conducted with experienced Software Maintenance Professionals on the topic of integrating issue 

tracking system with community driven Q&A websites. 
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We believe that there is a dearth of academic studies surveying the needs, problems encountered,human-factors and 

suggestions on the problem area discussed in this paper. 

There are many bug tracking systems available in the industry to use. Bug tracking  systems are also called as issue 

tracking system or issue reporting system or defect  tracking system or defect reporting system, etc. Bug tracking 

systems are developed by open source community as well as closed source organizations as a proprietary software. 

Open source means the source code is being shared with everybody under the General  Public License (GPL) policy. 

Anyone can contribute to the code voluntarily. There is no  restriction towards the submission of code. The 

moderator will see and verify the  reputation of the code submitter through his code submission pattern and its status 

can  also be changed as moderator. While in closed source community, the source code is the  property of the 

organization and the people who are outside the project may not be able to  see/browse the code. Outsiders can 

submit only bugs through the feedback or e-mail to  the sales/support person specified by the organization. In this 

article, we will consider the  open source project development scenario except one or two closed source products.  

Some of bug tracking tools are from open source communities and some of them from  closed source communities 

or commercial organizations. There are organizations which  can also provide support for the open source solutions. 

III PROPOSED SYSTEM 

The Proposed System we have the end-user dataset excel sheet , and we will enter the parameter randomly ,it will 

predict the result on the basis of status of the bug. Benefit of the system we can check and remove the max 

probability parameter. Although bug reporters may not recognize that the bug they are describing is a security bug, 

the natural-language description of the bug in the BR may be adequate to indicate that the bug is security-related and 

thus the BR is an SBR. 

a. Feature selection is iteratively performed until optimum points are reached. At the end of Step 5, 

there is a reduced feature set that performs optimally for the chosen classifier metric. 

b. Using the reduced feature set, a classification model is trained. Although many classification 

techniques could be employed, this paper focuses on the use of Naive Bayes . 

Its Advantages over Existing System are The performance is increased due to well designed database, Security 

is increased, Time saving in report generation and Easy to update the details.  

There are three main steps. The first step is to obtain a labeled BR data set that contains textual descriptions of bugs 

and labels to indicate whether a BR is an SBR or an NSBR. The labeled BR data set is required for building and 

evaluating our natural-language predictive model. The second step is to create three configuration files that are used 

in text mining: a start list, a stop list, and a synonym list. The third step is to train, validate, and test the predictive 

model that estimates the probability that a BR is an SBR. 
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            Fig 1 : BTS Top Level Diagram(a)                                      Fig 2 : Low Level Diagram-Login 
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Fig 3 : BTS Top Level Diagram(b) 
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V RESEARCH METHODOLOGY 

First find the likelihood of the two classes 

 For "yes" = 2/9 * 3/9 * 3/9 * 3/9 * 9/14 = 0.0053 

 For "no" = 3/5 * 1/5 * 4/5 * 3/5 * 5/14 = 0.0206 

 Conversion into a probability by normalization: 

o P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205 

o P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795 

5.1 Bayes' Rule 

More generally, the above is just an application of Bayes' Theorem. 

 Probability of event H given evidence E: 

                        Pr(E | H ) * Pr(H) 

      Pr(H | E) =  ------------------- 

                                 Pr(E) 

 A priori probability of H= Pr(H) 

o Probability of event before evidence has been seen 

 A posteriori probability of H= Pr[H|E] 

o Probability of event after evidence has been seen 

 Classification learning: what's the probability of the class given an instance? 

o Evidence E = instance 

o Event H = class value for instance 

 Naive Bayes assumption: evidence can be split into independent parts (i.e. attributes of instance! 

                      Pr(E1 | H )* Pr(E2 | H ) * ........                                    ………..... Pr(En | H ) * Pr(H ) 

      Pr(H | E) = ----------------------------------- 

                                          Pr(E) 

 We used this above. Here's our evidence: 

Outlook   Temp.  Humidity  Windy   Play 

 Sunny      Cool       High      True        ? 

 Here's the probability for "yes": 
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Pr( yes | E) = Pr(Outlook = Sunny | yes) * 

                   Pr(Temperature = Cool  | yes)* 

             Pr(Humidity = High  | yes) *Pr( yes)           Pr(Windy = True  | yes) * Pr(yes) / Pr(E)  = (2/9 * 3/9 * 

3/9 * 3/9)       * 9/14)   / Pr(E) 

Return the classification with highest probability 

 Probability of the evidence Pr(E) 

o Constant across all possible classifications; 

o So, when comparing N classifications, it cancels out 

5.2 Missing Values 

Missing values are a problem for any learner. Naive Bayes' treatment of missing values is particularly elegant. 

 During training: instance is not included in frequency count for attribute value-class combination 

 During classification: attribute will be omitted from calculation 

Eg.: Outlook Temp. Humidity  Windy   Play 

           ?          Cool      High       True    ?%% 

 Likelihood of "yes" = 3/9 * 3/9 * 3/9 * 9/14 = 0.0238 

 Likelihood of "no" = 1/5 * 4/5 * 3/5 * 5/14 = 0.0343 

 P("yes") = 0.0238 / (0.0238 + 0.0343) = 41% 

 P("no") = 0.0343 / (0.0238 + 0.0343) = 59% 

To fulfill our purposes, we propose our own procedures that may be useful for various domain areas.  

Procedure 1: PPR. Mining Specific Client’s Bug Usage 

Input: Database D of transactions, Specific Product attributes 

Output: Sites (info) used by individual user 

Method 

1. Accept input_Atr (Specific Attribute type) 

2. for (int i=0; i<= D.size; i++) 

3. if (input_Atr = = D_Atr) 

4. extract information as info from database 

5. Return info 
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6.end 

For the Web Site Maintainers, they should know the users’ interest rate on their sites. Depending on the users’ 

interest rate decreasing or increasing through the time, they can modify their site structure to attract more users from 

the aspect of economic benefits. We proposed the procedure AM especially for maintainers and developers as a 

result of Web usage over a specific period of time. 

Procedure 2: Find the users’ Component attribute to evaluate all state in dataset 

Input: Database D of transactions, Specific component 

Output: total transaction of Component attribute 

Method 

3. count= 0; temp[ ] =null; // initialization 

4. while (component_state= =NSBR || component_state==SBR) 

5. if( temp[ ] = =null) 

6. temp[ ] = D_Atr 

7. count ++ 

8. else 

9. while (temp [ ]) 

10. if (temp [ ]== D_Atr ) 

11. do nothing 

12. else temp[ ] = = D_Atr 

13. count ++ 

14. return count // total number of component attribute for class dependency  

VI  SIMULATION RESULTS  

If the model classifies an SBR as an NSBR, or if the model classifies an NSBR as an SBR, then the result is a 

misclassification. A true positive (TP) is a verified SBR that is correctly classified by the model. A false positive 

(FP) is a verified NSBR that is incorrectly classified to be an SBR. A false negative (FN) is a verified SBR that is 

incorrectly classified to be an NSBR. A true negative (TN) is a verified NSBR that is correctly classified to be an 

NSBR. Model precision is the percentage of correctly classified SBRs among SBRs and NSBRs that have been 

classified by the model to be SBRs (i.e., exceeding a minimum probability). 

We did not reveal the estimated probabilities to the security engineers to reduce potential bias in their analyses. 

Based on prior discussions with the security engineers, we estimated that security engineers would require 
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approximately 175 person-hours to analyze Apilot and determine whether the manually-labeled NSBRs are actually 

SBRs. If two security engineers disagreed on their evaluations of a manually-labeled BR, then they discussed their 

differences and reached an agreeable consensus.  

Now we get the finite stage for the dataset , which  depend on the product parameter, component parameter, status 

parameter, and resolution parameter. Corresponding to the SBR and NSBR class, we getting the fix stage to whole 

dataset.  

         

Fig 4 : Bug Tracking Loaded Dataset       Fig 5 : Attribute parameter value for dataset 

After classification it will getting the total category corresponding to the dataset in front of such attribute , the total 

category firefox is 15 infront of SBR and 224 for NSBR , in  Component block security is 5 times occurrence  

infront of SBR and 134 times occurrence NSBR.  

The maximum probability for NSBR is 0.001951 , with respect to firefox, security, berified, fixed  respective to 

whole dataset  

      

Fig 6 : Find Fix State Value For The Dataset   Fig 7 : Fix Probability For NSBR Value 

After changing the attribute we gain the different probability ,now we have to consider the maximum probability to 

whole dataset. 

After gaining the words probability, we fetch the summary for text mining in bug tracking system . Now we have to 

evaluate the bug related text and remove the stop words. 
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Fig 8 : Predictive iteration for SBR and NSBR         Fig 9: Text data processing for stop word count 

Get the maximum probability for words occurrence . preprocessing the data get count the words. After 

preprocessing we start for the stemming of words which we have to consider only . 

Evaluation for the bug fix prediction which efficiency with respect to time improving the efficiency average rate 

scale is 220-150 .which is moreover efficient for the other predictive system. 

        

Fig 10 : Stop words list                  Graph 1 : Performance for improved naïve with respect to efficiency of BTS 

 

Graph 2 : Comparison between INYB and NYB with respect to Efficiency 



International Journal of Advanced Technology in Engineering and Science                  www.ijates.com  

Volume No.02, Issue No. 09, September  2014                                            ISSN (online): 2348 – 7550 

 

204 | P a g e  

 

VII CONCLUSION AND FUTURE SCOPE 

Current bug tracking systems do not effectively elicit all of the information needed by developers. Without this 

information developers cannot resolve bugs in a timely fashion and so we believe that improvement to the way bug 

tracking systems collect information are needed. 

While implementing a range of improvements may be ideal, bug tracking systems may instead prefer to specialize, 

thus providing a rich set of choices. This would be a healthy change to the current situation where they all provide 

identical functionality. Identify information needs in a large sample of bug reports through manual inspection. This 

will help to compile a catalog of questions that can be used for the expert system. Using this catalog, collect answers 

and defect locations for another large sample of bug reports. This dataset will be used to automatically learn a 

prediction model.Evaluate the predictions and conduct usability studies.  
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