TRANSFORMER DESIGN GUI APPLICATION FOR HIGH FREQUENCY ELECTRICAL CIRCUITS

Hemant Pandey1, Upendra Joshi2, Protim Paul3, Aditya Naithani4

1, 4 Department of CSE, ASET, Amity University, Noida, (India)
2, 3 Department of EEE, ASET, Amity University, Noida, (India)

ABSTRACT

The purpose of this research paper is to understand the concepts of Two-switch forward convertor, practically understand its implementation and eventually linking it with the cyber world by create a GUI application for checking the transformer design. The manual process of performing this task is quite a tedious one. Even a slight error during the execution can lead to a lot of problems. Therefore this application is made to automate such an important task for its effective usage. The project allows us to check the transformer design by taking some of the required values from the user and then performing mathematical calculations as per certain formulae and hence give the desired output. The final project report also highlights the various software, tools and languages used in the development of the application.

Key Words–Transformer Design, GUI Application, High Frequency Transformers

I. INTRODUCTION

The research paper on Two-switch forward convertor aims to understand the concepts of Two-switch forward convertor, practically understand its implementation and eventually linking it with the cyber world by create a GUI application for checking the transformer design. The manual process of performing this task is quite a tedious one. Even a slight error during the execution can lead to a lot of problems. Therefore this application is made to automate such an important task for its effective usage. The project allows us to check the transformer design by taking some of the required values from the user and then performing mathematical calculations as per certain formulae and hence give the desired output. The final project report also highlights the various software, tools and languages used in the development of the application. The process started by first gaining a thorough and sound knowledge about a transformer and then understanding the various fields required to perform the mathematical calculations which help in validating the design. The application is a GUI based application that is created using JAVA-programming language, including concepts of SWINGS, AWT. The application is created on Net Beans IDE which made our task easier because of its user friendly interface and coding options. Finally, the output of the application was recorded in MySQL database which was connected to the application using the JDBC-ODBC driver.
CODE WITH EXPLANATION:

The application is a GUI based application that is created using JAVA-programming language, including concepts of SWINGS, AWT. The application is created on NetBeans IDE which made our task easier because of its user friendly interface and coding options. Finally, the output of the application was recorded in MySQL database which was connected to the application using the JDBC-ODBC driver.

```java
import java.sql.*;
import java.math.*;
import javax.swing.AbstractAction.*;
import javax.swing.JDialog;
import javax.swing.JOptionPane;
import javax.swing.JOptionPane;

public class NewJFrame extends javax.swing.JFrame {
    public double ac, aw;

    public NewJFrame() {
        initComponents();
    }

    @SuppressWarnings("unchecked")
```
The above 4 lines, specify the jframe function/method and are used to initialize the components in the beginning. This method is called from within the constructor to initialize the form.

```
private void switchfreqActionPerformed(java.awt.event.ActionEvent evt) {
}
```

The above line is the action method for the switching frequency text field

```
private void bmaxteslaActionPerformed(java.awt.event.ActionEvent evt) {
}
```

The above line is the action method for the max flux density/bmax text field

```
private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
```

The above line is the action method for the DESIGN TRANSFORMER button. Everything written in it is responsible for the events taking place by clicking on it.

```
float vo = Float.parseFloat(odcv.getText());
float fs = Float.parseFloat(switchfreq.getText());
float bmax = Float.parseFloat(bmaxtesla.getText());
float ipk = Float.parseFloat(ipkval.getText());
float jp = Float.parseFloat(primjp.getText());
float js = Float.parseFloat(secjs.getText());
```

In the above lines, we are storing the values from the text field into variables, and eventually typecasting them.

```
if(jRadioButton1.isSelected()==true)
{
    ac=537.24;aw=264;
}
else if(jRadioButton2.isSelected()==true)
{
    aw=256.04;ac=244;
}
```

In the above lines we are making decisions by using the IF-ELSE cases of selecting the various radio buttons, and finally selecting the value of ac and aw
double n1= vo/((2*fs)*bmax*ac);
double tr= 0.4*(504/(vo+1));
double n2= n1/tr;
double isec= ipk*(0.6324);
double iprim= isec/tr;
double acpri= iprim/jp;
double acsec= isec/js;
double awdg=(acpri*n1)+(acsec*n2);

the above lines, illustrate the various mathematical formulae used to validate the design of the transformer.

if (awdg<=(aw*0.4))
{
JOptionPane.showMessageDialog(null,"Design is Valid","Attention",JOptionPane.INFORMATION_MESSAGE);
}
else
{
JOptionPane.showMessageDialog(null,"Design is Invalid","Attention",JOptionPane.INFORMATION_MESSAGE);
}

In the above lines we are again making decisions by using the IF-ELSE cases, where if the mathematical condition is met, the corresponding message would be shown in another JOption Pane.

try
{
Class.forName("com.mysql.jdbc.Driver");
Connection con= DriverManager.getConnection("jdbc:mysql://localhost/research?user=\"root\"&password=\"root\";

stmt.setFloat(1, vo);
stmt.setFloat(2, fs);
stmt.setFloat(3, bmax);
stmt.setDouble(4, n1);
stmt.setDouble(5, ipk);

In the above lines, we registered the driver to connect with MySQL.
stmt.setDouble(6, n2);
stmt.setDouble(7, tr);
stmt.setDouble(8, iprim);
stmt.setDouble(9, isec);
stmt.setDouble(10, acpri);
stmt.setDouble(11, acsec);
stmt.setDouble(12, awdg);
stmt.executeUpdate();
stmt.close();

In the above lines, we added the values of the variables into the various fields in the database.

catch(Exception e)
{
 System.out.print(e);
}

The above line allows us to through an exception if any error occurs.

private void jRadioButton1ItemStateChanged(java.awt.event.ItemEvent evt) {
}

The above line is the action method for the first radio button.

private void jRadioButton2ItemStateChanged(java.awt.event.ItemEvent evt) {
}

The above line is the action method for the second radio button.

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
 JOptionPane.showMessageDialog(null, "Design parameters\n\n". "Attention". JOptionPane.INFORMATION_MESSAGE);
}

public static void main(String args[]) {
 java.awt.EventQueue.invokeLater(new Runnable() {
 public void run() {
 new NewJFrame().setVisible(true);
 }
 });
}
In the above lines, we allow the visibility of the JOption Pane earlier used to validate the design of the transformer.

private javax.swing.JTextField bmaxtesla;
private javax.swing.ButtonGroup buttonGroup1;
private javax.swing.JTextField ipkval;
private javax.swing.JButton jButton1;
private javax.swing.JButton jButton2;
private javax.swing.JLabel jLabel1;
private javax.swing.JLabel jLabel10;
private javax.swing.JLabel jLabel11;
private javax.swing.JLabel jLabel12;
private javax.swing.JLabel jLabel13;
private javax.swing.JLabel jLabel14;
private javax.swing.JLabel jLabel15;
private javax.swing.JLabel jLabel16;
private javax.swing.JLabel jLabel19;
private javax.swing.JLabel jLabel2;
private javax.swing.JLabel jLabel3;
private javax.swing.JLabel jLabel37;
private javax.swing.JLabel jLabel4;
private javax.swing.JLabel jLabel5;
private javax.swing.JLabel jLabel6;
private javax.swing.JLabel jLabel7;
private javax.swing.JLabel jLabel8;
private javax.swing.JLabel jLabel9;
private javax.swing.JRadioButton jRadioButton1;
private javax.swing.JRadioButton jRadioButton2;
private javax.swing.JTextField odcv;
private javax.swing.JTextField primjp;
private javax.swing.JTextField secjs;
private javax.swing.JTextField switchfreq;

The above mentioned line mentions all the swing functionalities that we have used so far in designing the GUI of our application.

II. SOME SCREEN SHOT OF THIS APPLICATION ARE GIVEN BELOW:
Fig2: Screen-Shot of GUI Application for Transformer Design

III. CONCLUSION

Throughout the course of the development phase of the application, we made sure that the application would certainly play an impactful role in this research. It automates the task of validating a transformer design. For the future, we will also add option for validating the inductor design and other relevant features associated with a two-switch forward convertor.

REFERENCES