FIXED POINT THEOREMS IN INTUITIONISTIC FUZZY METRIC SPACE

Arihant Jain¹, Bijendra Singh², Mamta Singh³, Amit Kumar Govery⁴

¹Department of Applied Mathematics,

Shri Guru Sandipani Institute of Technology and Science, Ujjain (M.P.)

²School of Studies in Mathematics, Vikram University, Ujjain (M.P.)

³Department of Mathematical Science and Computer Application,

Bundelkhand University, Jhansi (U.P.)

⁴Department of Mathematics, Mandsaur Institute of Technology, Mandsaur (M.P.)

ABSTRACT

In this paper, common fixed point theorems for occasionally weakly compatible mappings in intuitionistic fuzzy metric space has been proved which is a generalization of the result of Turkoglu et. al. [9]. We also cited an example in support of our result.

Keywords - Common Fixed Points, Intuitionistic Fuzzy Metric Space, Compatible Maps And Occasionally Weakly Compatible Mappings

AMS Subject Classification: Primary 47H10, Secondary 54H25.

I. INTRODUCTION

Zadeh's [10] investigation of the notion of fuzzy set has led to a rich growth of fuzzy Mathematics. Many authors have introduced the concept of fuzzy metric in different ways. Atanassov [2] introduced and studied the concept of intuitionistic fuzzy set. The notion of intuitionstic fuzzy metric space defined by Park [8] is a generalization of fuzzy metric space due to George and Veeramani [4]. Further, using the idea of Intuitionistic Fuzzy set, Alaca et.al. [1] defined the notion of Intuitionistic Fuzzy Metric space, as Park [8] with the help of continuous t—norms and continuous t—conorms, as a generalization of fuzzy metric space due to Kramosil and Michalek [6], further Coker [3], Turkoglu [9] and others have been expansively developed the theory of Intuitionistic Fuzzy set and applications. Turkoglu et. al. [9] introduced the notion of Cauchy sequences in intuitionistic fuzzy metric space. They generalized the Jungck's [5] common fixed point theorem in intuitionistic fuzzy metric space and proved the intuitionistic fuzzy version of Pant's theorem [7] by giving the definition of weakly commuting and R-weakly commuting mappings in intuitionistic fuzzy metric space.

For the sake of completeness, we recall some definitions and known results in Fuzzy metric space.

II. PRELIMINARIES

Definition 2.1. [1] A binary operation $*:[0,1] \times [0,1] \rightarrow [0,1]$ is continuous t-norm if * satisfies the following conditions:

- (i) * is commutative and associative;
- (ii) * is continuous;
- (iii) $a * 1 = a \text{ for all } a \in [0,1];$
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for all $a, b, c, d \in [0,1]$.

Definition 2.2. [1] A binary operation $\Diamond: [0,1] \times [0,1] \to [0,1]$ is continuous t-conorm if satisfies the following conditions:

- (i) ♦ is commutative and associative;
- (iii) $a \diamond 0 = a \text{ for all } a \in [0,1];$
- (iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0,1]$.

Remark 2.1. [1] The concepts of triangular norms (t-norms) and triangular co-norms (t-conorms) are known as axiomatic skeletons that we use for characterizing fuzzy intersections and unions respectively.

Definition 2.3. [1] A 5-tuple (X,M,N,*,) is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, * is a continuous t-norm, is a continuous t-conorm and M, N are fuzzy set on $X^2 \times [0, \infty)$ satisfying the following conditions:

- (i) $M(x, y, t) + N(x, y, t) \le 1$ for all $x, y \in X$ and t > 0;
- (ii) M(x, y, 0) = 0 for all $x, y \in X$;
- (iii) M(x, y, t) = 1 for all $x, y \in X$ and t > 0 if and only if x = y;
- (iv) M(x, y, t) = M(y, x, t) for all $x, y \in X$ and t > 0;
- (v) $M(x, y, t) * M(y, z, s) \le M(x, z, t+s)$ for all x, y, z $\in X$ and s, t >0;
- (vi) for all x, y $\in X$, M(x, y, .): $[0, \infty) \rightarrow [0,1]$ is left continuous;
- (vii) $\lim_{t\to\infty} M(x, y, t) = 1$ for all $x, y \in X$ and t > 0;
- (viii) N(x, y, 0) = 1 for all $x, y \in X$;
- (ix) N(x, y, t) = 0 for all $x, y \in X$ and t > 0 if and only if x = y;
- (x) N(x, y, t) = N(y, x, t) for all $x, y \in X$ and t > 0;

International Journal of Advanced Technology in Engineering and Science www.ijates.com Volume No.02, Issue No. 07, July 2014 ISSN (online): 2348 – 7550

- $(xi) \qquad N(x,\,y,\,t) \mathbin{\Diamond} N(y,\,z,\,s) \ge N(x,\,z,\,t+s) \ \text{ for all } x,\,y,\,z \in X \text{ and } s,\,t>0;$
- (xii) for all $x, y \in X$, $N(x, y, .) : [0, \infty) \to [0, 1]$ is right continuous;
- (xiii) $\lim_{t\to\infty} N(x, y, t) = 0$ for all x, y in X.

Then (M, N) is called an *intuitionistic fuzzy metric* on X. The functions M(x,y,t) and N(x,y,t) denote the degree of nearness and the degree of non nearness between x and y with respect to t, respectively.

Remark 2.1. [1] Every fuzzy metric space (X, M, *) is an intuitionistic fuzzy metric space of the form $(X, M, 1-M, *, \diamond)$ such that t-norm * and t-conorm are associated, i.e,

$$x \lozenge y = 1 - (1 - x) * (1 - y)$$
 for all $x, y \in X$.

Remark 2.2. [1] In intuitionistic fuzzy metric space X, M(x, y, .) is non-decreasing and N(x, y, .) is non-increasing for all $x, y \in X$.

Definition 2.4. [1] Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space. Then

(a) a sequence $\{x_n\}$ in X is said to be Cauchy sequence if, for all t > 0 and p > 0,

$$\lim_{n \to \infty} M(x_{n+p}, x_n, t) = 1 \text{ and } \lim_{n \to \infty} N(x_{n+p}, x_n, t) = 0.$$

(b) a sequence $\{x_n\}$ in X is said to be *convergent* to a point $x \in X$ if, for all t > 0,

$$\lim_{n \to \infty} M(x_n, x, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(x_n, x, t) = 0$$

Definition 2.5. [1] An intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ is said to be *complete* if and only if every Cauchy sequence in X is convergent.

Lemma 2.1. [2] Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space. If there exists $k \in (0,1)$ such that

$$M(x,y,kt) \ge M(x,y,t)$$
 and $N(x,y,kt) \le N(x,y,t)$ for $x, y \in X$.

Then x = y.

Lemma 2.2. [2] Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space. If there exists a number $k \in (0,1)$ such that

$$(a) \qquad M(y_{n+2},y_{n+1},kt) \geq M(y_{n+1},y_n,t), \qquad N(y_{n+2},y_{n+1},kt) \leq N(y_{n+1},y_n,t)$$

for all t > 0 and n = 1, 2, ... then $\{y_n\}$ is a Cauchy sequence in X.

Definition 2.6.[1] Two maps A and B from an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ into itself are said to *compatible* if

$$\lim_{n\to\infty} M(ABx_n,BAx_n,t)=1 \qquad \text{and} \quad \lim_{n\to\infty} N(ABx_n,BAx_n,t)=0$$

for all t > 0, whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Bx_n = x \quad \text{ for some } x \in X.$$

Definition 2.7. Two maps A and B from an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ into itself are said to *occasionally weakly compatible* if and only if there is a point x in X which is coincidence point of A and B at which A and B commute.

III. MAIN RESULT

In this section, we prove a common fixed point theorem for occasionally weakly compatible mappings in intuitionistic fuzzy metric space which is a generalization of Turkoglu et. al. [9].

Theorem 3.1. Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric spaces. Let $f, g: X \to X$ be occasionally weakly compatible mappings satisfying the following conditions:

- $(3.1) g(X) \subset f(X);$
- (3.2) there exists a number $k \in (0, 1)$ such that

$$M(gx,\,gy,\,kt)\geq M(fx,\,fy,\,t)$$

$$N(gx, gy, kt) \le N(fx, fy, t)$$

for all
$$x, y \in X$$
 and $t > 0$;

(3.3) one of the subspace g(X) or f(X) is complete.

Then f and g have a unique common fixed point in X.

Proof. By (3.1), since $g(X) \subset f(X)$, for any $x_0 \in X$, there exists a point $x_1 \in X$ such that $gx_0 = fx_1$.

In general, chose x_{n+1} such that

$$y_n = fx_{n+1} = gx_n.$$

From Turkoglu et. al. [9], we conclude that $\{y_n\}$ is a Cauchy sequence in X.

Since either f(X) or g(X) is complete, for definiteness assume that f(X) is complete.

Since f(X) is complete, so there exists a point $p \in X$ such that

$$fp = z$$
.

Now using (3.2), we have

$$M(gp, gx_n, kt) \ge M(fp, fx_n, t)$$

and
$$N(gp, gx_n, kt) \le N(fp, fx_n, t)$$
.

Taking limit as $n \rightarrow \infty$, we obtain

$$gp = z$$
.

Therefore, we have fp = gp = z.

Since f and g are occasionally weakly compatible, therefore

$$fgp = gfp$$
, i.e., $fz = gz$.

Now we show that z is a common fixed point of f and g.

From (3.2), we get

$$M(gz, gx_n, kt) \ge M(fz, fx_n, t)$$

and
$$N(gz, gx_n, kt) \le N(fz, fx_n, t)$$

Proceeding limit as $n\rightarrow\infty$, we obtain

$$gz = z$$
.

Hence z is a common fixed point of f and g both.

Uniqueness: Let w be another common fixed point of f and g then

$$fw = gw = w$$
.

Using (3.2), we get

$$M(gz, gw, kt) \ge M(fz, fw, t)$$

$$N(gz, gw, kt) \le N(fz, fw, t)$$

or $M(z, w, kt) \ge M(z, w, t)$

$$N(z, w, kt) \le N(z, w, t)$$
.

Using lemma 2.1, we get

$$z = w$$
.

Hence, z is the unique common fixed point of f and g.

This completes the proof.

Example 3.1. Let $X = \left\{\frac{1}{n} : n \in N\right\} \cup \{0\}$ with * continuous t-norm and \Diamond continuous t-conorm defined by a * b = ab and $a \Diamond b = min \{1, a+b\}$ respectively, for all $a, b \in [0,1]$. For each $t \in [0,\infty)$ and $x, y \in X$, define (M,N) by

$$M\left(x\,,\,y\,,\,t\right) = \begin{cases} \displaystyle\frac{t}{t\,+\,\left|x\,-\,y\,\right|} &,\quad t\,>\,0\,,\\ \\ &0&,\quad t\,=\,0 \end{cases}$$

International Journal of Advanced Technology in Engineering and Science www.ijates.com Volume No.02, Issue No. 07, July 2014 ISSN (online): 2348 – 7550

and
$$N\left(x,y,t\right)=\begin{cases} \frac{\left|x-y\right|}{t+\left|x-y\right|} &,\quad t>0,\\ \\ 1 &,\quad t=0 \end{cases}$$

Clearly, $(X, M, N, *, \diamond)$ is an intuitionistic fuzzy metric space.

Define
$$g(x) = \frac{x}{6}$$
 and $f(x) = \frac{x}{2}$ on X. It is clear that $g(x) \subseteq f(x)$.

Now,
$$M\left(gx, gy, \frac{t}{3}\right) = \frac{\frac{t}{2}}{\frac{t}{2} + \frac{|x - y|}{6}} = \frac{3t}{3t + |x - y|} \ge \frac{t}{t + \frac{|x - y|}{3}} = \frac{3t}{3t + |x - y|} = M(fx, fy, t),$$

and

$$N\left(gx,gy,\frac{t}{3}\right) = \frac{\frac{\left|x-y\right|}{6}}{\frac{t}{2} + \frac{\left|x-y\right|}{6}} = \frac{\left|x-y\right|}{3t + \left|x-y\right|} \le \frac{\frac{\left|x-y\right|}{3}}{t + \frac{\left|x-y\right|}{3}} = \frac{\left|x-y\right|}{3t + \left|x-y\right|} = N\left(fx,fy,t\right).$$

Thus, all the conditions of Theorem 3.1 are satisfied and so f and g have a unique common fixed point 0.

As an application of Theorem 3.1, we prove a common fixed point theorem for four finite families of mappings which runs as follows:

Theorem 3.2. Let $\{f_1, f_2, ..., f_m\}$ and $\{g_1, g_2, ..., g_n\}$ be two finite families of self-mappings of a intuitionistic fuzzy metric spaces with continuous t-norm * and continuous t-conorm \Diamond defined by $a*a \geq a$ and $(1-a) \Diamond (1-a) \leq (1-a)$ for all $a \in [0, 1]$ such that $f = f_1f_2 ... f_m$, $g = g_1g_2 ... g_n$, satisfy condition (3.1), (3.2) and (3.3).

Then f and g have a point of coincidence. Moreover, if $f_if_j=f_jf_i$, $g_kg_l=g_lg_k$ for all $i,j\in I_1=\{1,2,\ldots,m\},$ $k,l\in I_2=\{1,2,\ldots,n\},$ then (for all $i\in I_1,$ $k\in I_2$) f_i and g_k have a common fixed point.

Proof. The conclusions is immediate i.e., f and g have a point of coincidence as f and g satisfy all the conditions of Theorem 3.1. Now appealing to component wise commutativity of various pairs, one can immediately prove that fg = gf, hence, obviously pair (f, g) is occasionally weakly compatible. Note that all the conditions of Theorem 3.1 are satisfied which ensured the existence of a unique common fixed point, say z. Now one need to show that z remains the fixed point of all the component maps.

For this consider

$$\begin{split} f(f_iz) = & \quad ((f_1f_2 \ldots f_m)f_i)z = (f_1f_2 \ldots f_{m-1})((f_mf_i)z) = (f_1 \ldots f_{m-1})(f_if_mz) \\ \\ = & \quad (f_1 \ldots f_{m-2})(f_{m-1}f_i(f_mz) = (f_1 \ldots f_{m-2})(f_if_{m-1}(f_mz)) \\ \\ = & \quad \ldots \quad f_1f_i(f_2f_3f_4 \ldots f_mz) = f_if_1(f_2f_3 \ldots f_mz) \\ \\ = & \quad f_i(fz) = f_iz. \end{split}$$

International Journal of Advanced Technology in Engineering and Science www.ijates.com Volume No.02, Issue No. 07, July 2014 ISSN (online): 2348 – 7550

Similarly, one can show that

$$f(g_k z) = g_k(fz) = g_k z, g(g_k z) = g_k(gz) = g_k z$$

and $g(f_i z) = f_i(gz) = f_i z$,

which show that (for all i and k) f_iz and g_kz are other fixed points of the pair (f, g).

Now appealing to the uniqueness of common fixed points of both pairs separately, we get

 $z = f_i z = g_k z$, which shows that z is a common fixed point of f_i , g_k for all i and k.

IV. CONCLUSION

Theorem 3.1 is a generalization of the result of Turkoglu et. al. [9] in the sense that condition of commuting mappings of the pairs of self maps has been restricted to occasionally weakly compatible self maps.

REFERENCES

- [1] Alaca, C., Turkoglu, D. and Yildiz, C., Fixed points in Intuitionistic fuzzy metric spaces, Smallerit Chaos, Solitons & Fractals, 29 (5) (2006), 1073 1078.
- [2] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and System, 20 (1986), 87 96.
- [3] Coker, D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and System, 88(1997), 81–89.
- [4] George, A. and Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395 399.
- [5] Jungck, G., Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976), 261–263.
- [6] Kramosil, O. and Michalek, J., Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 336-344.
- [7] Pant, R.P., Common fixed points of non-commuting mappings, J. Math. Anal. Appl., 188(1994), 436–440.
- [8] Park, J.H., Intuitionistic fuzzy metric spaces, Chaos, Solitions & Fractals, 22 (2004), 1039-1046.
- [9] Turkoglu, D., Alaca, C., Cho, Y.J., and Yildiz, C., Common fixed point theorems in intuitionistic fuzzy metric space, J. Appl. Math. and Computing, 22 (2006), 411 424.
- [10] Zadeh, L. A., Fuzzy sets, Inform and control 89 (1965), 338-353.