FIXED POINT THEOREMS IN INTUITIONISTIC FUZZY METRIC SPACE

Arihant Jain¹, Bijendra Singh², Mamta Singh³, Amit Kumar Govery⁴

¹Department of Applied Mathematics,
Shri Guru Sandipani Institute of Technology and Science, Ujjain (M.P.)
²School of Studies in Mathematics, Vikram University, Ujjain (M.P.)
³Department of Mathematical Science and Computer Application,
Bundelkhand University, Jhansi (U.P.)
⁴Department of Mathematics, Mandsaur Institute of Technology, Mandsaur (M.P.)

ABSTRACT
In this paper, common fixed point theorems for occasionally weakly compatible mappings in intuitionistic fuzzy metric space has been proved which is a generalization of the result of Turkoglu et. al. [9]. We also cited an example in support of our result.

Keywords - Common Fixed Points, Intuitionistic Fuzzy Metric Space, Compatible Maps And Occasionally Weakly Compatible Mappings

AMS Subject Classification: Primary 47H10, Secondary 54H25.

I. INTRODUCTION
Zadeh’s [10] investigation of the notion of fuzzy set has led to a rich growth of fuzzy Mathematics. Many authors have introduced the concept of fuzzy metric in different ways. Atanassov [2] introduced and studied the concept of intuitionistic fuzzy set. The notion of intuitionistic fuzzy metric space defined by Park [8] is a generalization of fuzzy metric space due to George and Veeramani [4]. Further, using the idea of Intuitionistic Fuzzy set, Alaca et.al. [1] defined the notion of Intuitionistic Fuzzy Metric space, as Park [8] with the help of continuous t – norms and continuous t–conorms, as a generalization of fuzzy metric space due to Kramosil and Michalek [6], further Coker [3], Turkoglu [9] and others have been expansively developed the theory of Intuitionistic Fuzzy set and applications. Turkoglu et. al. [9] introduced the notion of Cauchy sequences in intuitionistic fuzzy metric space. They generalized the Jungck’s [5] common fixed point theorem in intuitionistic fuzzy metric space and proved the intuitionistic fuzzy version of Pant’s theorem [7] by giving the definition of weakly commuting and R-weakly commuting mappings in intuitionistic fuzzy metric space.

For the sake of completeness, we recall some definitions and known results in Fuzzy metric space.
II. PRELIMINARIES

Definition 2.1. [1] A binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is continuous t-norm if $*$ satisfies the following conditions:

- (i) $*$ is commutative and associative;
- (ii) $*$ is continuous;
- (iii) $a * 1 = a$ for all $a \in [0, 1]$;
- (iv) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0, 1]$.

Definition 2.2. [1] A binary operation $\triangledown: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is continuous t-conorm if \triangledown satisfies the following conditions:

- (i) \triangledown is commutative and associative;
- (ii) \triangledown is continuous;
- (iii) $a \triangledown 0 = a$ for all $a \in [0, 1]$;
- (iv) $a \triangledown b \leq c \triangledown d$ whenever $a \leq c$ and $b \leq d$
 for all $a, b, c, d \in [0, 1]$.

Remark 2.1. [1] The concepts of triangular norms (t-norms) and triangular co-norms (t-conorms) are known as axiomatic skeletons that we use for characterizing fuzzy intersections and unions respectively.

Definition 2.3. [1] A 5-tuple $(X, M, N, *, \triangledown)$ is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, $*$ is a continuous t-norm, \triangledown is a continuous t-conorm and M, N are fuzzy set on $X^2 \times [0, \infty)$ satisfying the following conditions:

- (i) $M(x, y, t) + N(x, y, t) \leq 1$ for all $x, y \in X$ and $t > 0$;
- (ii) $M(x, y, 0) = 0$ for all $x, y \in X$;
- (iii) $M(x, y, t) = 1$ for all $x, y \in X$ and $t > 0$ if and only if $x = y$;
- (iv) $M(x, y, t) = M(y, x, t)$ for all $x, y \in X$ and $t > 0$;
- (v) $M(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$ for all $x, y, z \in X$ and $s, t > 0$;
- (vi) for all $x, y \in X$, $M(x, y, .) : [0, \infty) \rightarrow [0, 1]$ is left continuous;
- (vii) $\lim_{t \rightarrow \infty} M(x, y, t) = 1$ for all $x, y \in X$ and $t > 0$;
- (viii) $N(x, y, 0) = 1$ for all $x, y \in X$;
- (ix) $N(x, y, t) = 0$ for all $x, y \in X$ and $t > 0$ if and only if $x = y$;
- (x) $N(x, y, t) = N(y, x, t)$ for all $x, y \in X$ and $t > 0$;
N(x, y, t) \geq N(y, z, s) \geq N(x, z, t + s) for all x, y, z \in X and s, t > 0;

for all x, y \in X, N(x, y, .) : [0, \infty) \to [0,1] is right continuous;

\lim_{t \to x} N(x, y, t) = 0 for all x, y \in X.

Then (M, N) is called an intuitionistic fuzzy metric on X. The functions M(x,y,t) and N(x,y,t) denote the degree of nearness and the degree of non nearness between x and y with respect to t, respectively.

Remark 2.1. [1] Every fuzzy metric space \((X, M, *)\) is an intuitionistic fuzzy metric space of the form \((X, M, 1-M, *, \emptyset)\) such that t-norm * and t-conorm are associated, i.e.,

\[x \bowtie y = 1 - (1 - x) * (1 - y) \quad \text{for all } x, y \in X. \]

Remark 2.2. [1] In intuitionistic fuzzy metric space \(X, M(x, y, .)\) is non-decreasing and \(N(x, y, .)\) is non-increasing for all \(x, y \in X\).

Definition 2.4. [1] Let \((X, M, N, *, \emptyset)\) be an intuitionistic fuzzy metric space. Then

(a) a sequence \(\{x_n\}\) in X is said to be Cauchy sequence if, for all \(t > 0\) and \(p > 0\),

\[\lim_{s \to \infty} M(x_{n+p}, x_n, t) = 1 \quad \text{and} \quad \lim_{s \to \infty} N(x_{n+p}, x_n, t) = 0. \]

(b) a sequence \(\{x_n\}\) in X is said to be convergent to a point \(x \in X\) if, for all \(t > 0\),

\[\lim_{s \to \infty} M(x_n, x, t) = 1 \quad \text{and} \quad \lim_{s \to \infty} N(x_n, x, t) = 0. \]

Definition 2.5. [1] An intuitionistic fuzzy metric space \((X, M, N, *, \emptyset)\) is said to be complete if and only if every Cauchy sequence in X is convergent.

Lemma 2.1. [2] Let \((X, M, N, *, \emptyset)\) be an intuitionistic fuzzy metric space. If there exists \(k \in (0,1)\) such that

\[M(x,y,kt) \geq M(x,y,t) \quad \text{and} \quad N(x,y,kt) \leq N(x,y,t) \quad \text{for } x, y \in X. \]

Then \(x = y\).

Lemma 2.2. [2] Let \((X, M, N, *, \emptyset)\) be an intuitionistic fuzzy metric space. If there exists a number \(k \in (0,1)\) such that

(a) \(M(y_{n+2}, y_{n+1}, kt) \geq M(y_{n+1}, y_n, t), \quad N(y_{n+2}, y_{n+1}, kt) \leq N(y_{n+1}, y_n, t)\)

for all \(t > 0\) and \(n = 1, 2, ...\) then \(\{y_n\}\) is a Cauchy sequence in X.

Definition 2.6. [1] Two maps A and B from an intuitionistic fuzzy metric space \((X, M, N, *, \emptyset)\) into itself are said to be compatible if

\[\lim_{k \to \infty} M(ABx_n, BAX_n, t) = 1 \quad \text{and} \quad \lim_{k \to \infty} N(ABx_n, BAX_n, t) = 0 \]

for all \(t > 0\), whenever \(\{x_n\}\) is a sequence in X such that
\[\lim_{n \to \infty} A x_n = \lim_{n \to \infty} B x_n = x \quad \text{for some } x \in X. \]

Definition 2.7. Two maps \(A \) and \(B \) from an intuitionistic fuzzy metric space \((X, M, N, *, \Diamond)\) into itself are said to be **occasionally weakly compatible** if and only if there is a point \(x \) in \(X \) which is coincidence point of \(A \) and \(B \) at which \(A \) and \(B \) commute.

III. MAIN RESULT

In this section, we prove a common fixed point theorem for occasionally weakly compatible mappings in intuitionistic fuzzy metric space which is a generalization of Turkoglu et al. [9].

Theorem 3.1. Let \((X, M, N, *, \Diamond)\) be an intuitionistic fuzzy metric spaces. Let \(f, g : X \to X \) be occasionally weakly compatible mappings satisfying the following conditions:

1. \((3.1)\) \(g(X) \subseteq f(X); \)
2. \((3.2)\) there exists a number \(k \in (0, 1) \) such that

 \[M(gx, gy, kt) \geq M(fx, fy, t) \]

 \[N(gx, gy, kt) \leq N(fx, fy, t) \]

 for all \(x, y \in X \) and \(t > 0 \);
3. \((3.3)\) one of the subspaces \(g(X) \) or \(f(X) \) is complete.

Then \(f \) and \(g \) have a unique common fixed point in \(X \).

Proof. By (3.1), since \(g(X) \subseteq f(X) \), for any \(x_0 \in X \), there exists a point \(x_1 \in X \) such that \(gx_0 = fx_1 \).

In general, chose \(x_{n+1} \) such that

\[y_n = fx_{n+1} = gx_n \]

From Turkoglu et al. [9], we conclude that \(\{ y_n \} \) is a Cauchy sequence in \(X \).

Since either \(f(X) \) or \(g(X) \) is complete, for definiteness assume that \(f(X) \) is complete.

Since \(f(X) \) is complete, so there exists a point \(p \in X \) such that

\[fp = z. \]

Now using (3.2), we have

\[M(gp, gx_n, kt) \geq M(fp, fx_n, t) \]

and

\[N(gp, gx_n, kt) \leq N(fp, fx_n, t). \]

Taking limit as \(n \to \infty \), we obtain

\[gp = z. \]

Therefore, we have \(fp = gp = z \).
Since \(f \) and \(g \) are occasionally weakly compatible, therefore
\[
fgp = gfp, \text{ i.e., } fz = gz.
\]

Now we show that \(z \) is a common fixed point of \(f \) and \(g \).

From (3.2), we get
\[
M(gz, gx_n, kt) \geq M(fz, fx_n, t)
\]
and
\[
N(gz, gx_n, kt) \leq N(fz, fx_n, t)
\]

Proceeding limit as \(n \rightarrow \infty \), we obtain
\[
gz = z.
\]

Hence \(z \) is a common fixed point of \(f \) and \(g \) both.

Uniqueness: Let \(w \) be another common fixed point of \(f \) and \(g \) then
\[
fw = gw = w.
\]

Using (3.2), we get
\[
M(gz, gw, kt) \geq M(fz, fw, t)
\]
\[
N(gz, gw, kt) \leq N(fz, fw, t)
\]
or
\[
M(z, w, kt) \geq M(z, w, t)
\]
\[
N(z, w, kt) \leq N(z, w, t)
\]

Using lemma 2.1, we get
\[
z = w.
\]

Hence, \(z \) is the unique common fixed point of \(f \) and \(g \).

This completes the proof.

Example 3.1. Let \(X = \{ \frac{1}{n} : n \in \mathbb{N} \} \cup \{ 0 \} \) with \(* \) continuous t-norm and \(\oplus \) continuous t-conorm defined by \(a * b = ab \) and \(a \oplus b = \min \{ 1, a+b \} \) respectively, for all \(a, b \in [0,1] \). For each \(t \in [0, \infty) \) and \(x, y \in X \), define \((M, N) \) by
\[
M(x, y, t) = \begin{cases}
\frac{t}{t + |x - y|}, & t > 0, \\
0, & t = 0
\end{cases}
\]
and \[N(x, y, t) = \begin{cases} \frac{|x - y|}{t + |x - y|}, & t > 0, \\ 1, & t = 0. \end{cases} \]

Clearly, \((X, M, N, *, \varnothing)\) is an intuitionistic fuzzy metric space.

Define \(g(x) = \frac{x}{6}\) and \(f(x) = \frac{x}{2}\) on \(X\). It is clear that \(g(x) \subseteq f(x)\).

Now, \(M\left(\frac{g(x, y)}{3}\right) = \frac{2}{t + \frac{|x - y|}{6}} = \frac{3t}{t + \frac{|x - y|}{3}} = \frac{3t}{3 + \frac{|x - y|}{3}} = M\left(\frac{f(x, y)}{t}\right)\),

and

\[N\left(\frac{g(x, y)}{3}\right) = \frac{|x - y|}{3 + \frac{|x - y|}{3}} \leq \frac{|x - y|}{3 + \frac{|x - y|}{3}} = N\left(\frac{f(x, y)}{t}\right). \]

Thus, all the conditions of Theorem 3.1 are satisfied and so \(f\) and \(g\) have a unique common fixed point 0.

As an application of Theorem 3.1, we prove a common fixed point theorem for four finite families of mappings which runs as follows:

Theorem 3.2. Let \(\{f_1, f_2, \ldots, f_m\}\) and \(\{g_1, g_2, \ldots, g_n\}\) be two finite families of self-mappings of an intuitionistic fuzzy metric spaces with continuous \(t\)-norm * and continuous \(t\)-conorm \(\varnothing\) defined by \(a* a \geq a\) and \((1-a) \varnothing (1-a) \leq (1-a)\) for all \(a \in [0, 1]\) such that \(f = f_1 f_2 \ldots f_m\), \(g = g_1 g_2 \ldots g_n\), satisfy condition (3.1), (3.2) and (3.3).

Then \(f\) and \(g\) have a point of coincidence. Moreover, if \(f_i f_j = f_j f_i\) and \(g_k g_l = g_l g_k\) for all \(i, j \in I_1 = \{1, 2, \ldots, m\}\), \(k, l \in I_2 = \{1, 2, \ldots, n\}\), then (for all \(i \in I_1, k \in I_2\)) \(f_i\) and \(g_k\) have a common fixed point.

Proof. The conclusion is immediate i.e., \(f\) and \(g\) have a point of coincidence as \(f\) and \(g\) satisfy all the conditions of Theorem 3.1. Now appealing to component wise commutativity of various pairs, one can immediately prove that \(fg = gf\), hence, obviously pair \((f, g)\) is occasionally weakly compatible. Note that all the conditions of Theorem 3.1 are satisfied which ensured the existence of a unique common fixed point, say \(z\). Now one need to show that \(z\) remains the fixed point of all the component maps.

For this consider
\[f(fz) = ((f_1 f_2 \ldots f_m)z) = (f_1 f_2 \ldots f_{m-1})(f_m f_i)z = (f_1 \ldots f_{m-1})(f_m f_i z) = (f_1 \ldots f_{m-2})(f_{m-1} f_i f_m z) = \ldots = f_i f_j f_3 \ldots f_m z = f_i f_j f_3 \ldots f_m z = f_i (f_j z) = f_i z. \]
Similarly, one can show that

\[f(g_kz) = g_k(fz) = g_kz, \quad g(g_kz) = g_k(gz) = g_kz \]

and

\[g(f_i z) = f_i(gz) = f_i z, \]

which show that (for all \(i \) and \(k \)) \(f_i z \) and \(g_k z \) are other fixed points of the pair \((f, g)\).

Now appealing to the uniqueness of common fixed points of both pairs separately, we get

\[z = f_i z = g_k z, \]

which shows that \(z \) is a common fixed point of \(f_i, g_k \) for all \(i \) and \(k \).

IV. CONCLUSION

Theorem 3.1 is a generalization of the result of Turkoglu et. al. [9] in the sense that condition of commuting mappings of the pairs of self maps has been restricted to occasionally weakly compatible self maps.

REFERENCES

